地球的历史

供稿:hz-xin.com     日期:2024-05-13
地球历史的地球起源

关于太阳系的形成,一类认为太阳系是一次激烈的偶然突变而产生的,即灾变说观点;另一类则认为太阳系是有条不紊地逐渐演变成的,即演化说观点。 1755年,德国哲学家康德根据牛顿的万有引力原理,提出一个太阳系形成的假说,认为太阳系中的太阳、行星和卫星等是由星云——一种稀薄的云雾状微粒物质逐渐演化形成的。1796年,法国天文学家拉普拉斯也提出了与康德类似的星云说,后人常把两者合起来,统称“康德一拉普拉斯星云说”。这个假说在19世纪的大部分时间内占统治地位。 星云说认为:恒星的形成是银河弥漫的原始星云的某一个球状碎片,在自身引力的作用下不断收缩,产生旋涡,旋涡使星云碎裂成大量碎片,每个碎片又逐渐转化为恒星。太阳就是其中之一,它也不断收缩、旋转,在长期的运动中形成原始太阳。周围的物体不断聚合、碰撞,越转越大,就形成了今天的八大行星。行星周围的物质,也是这样渐渐形成了卫星。这就是太阳系形成的一个主要假说。 唯心主义认为,地球和整个宇宙都是依神或上帝的意思创造出来的。18世纪爱尔兰一个大主教公开宣称:“地球是纪元前4004年10月23日一个星期天的上午9时整被上帝创造出来的。”在中国古代,人们认为远古的时候还没有天地,宇宙间只有一团气,在一万八千年前,有位盘古氏开天辟地,才有了日月星辰和大地。 康德和拉普拉斯他们认为太阳系是由一个庞大的旋转着的原始星云形成的。原始星云是由气体和固体微粒组成,它在自身引力作用下不断收缩。星云体中的大部分物质聚集成质量很大的原始太阳。 与此同时,环绕在原始太阳周围的稀疏物质微粒旋转的加快,便向原始太阳的赤道面集中,密度逐渐增大,在物质微粒间相互碰撞和吸引的作用下渐渐形成团快,大团快再吸引小团快就形成了行星。行星周围的物质按同样的过程形成了卫星。这就是康德——拉普拉斯星云说。 关于地球和太阳系起源还有许多假说,如碰撞说、潮汐说、大爆炸宇宙说等等。自20世纪50年代以来,这些假说受到越来越多的人质疑,星云说又跃居统治地位。国内外的许多天文学家对地球和太阳系的起源不仅进行了一般理论上的定性分析,还定量地、较详细论述了行星的形成过程,他们都认为地球和太阳系的起源是原始星云演化的结果。 中国天文学家戴文赛认为,在50亿年之前,宇宙中有一个比太阳大几倍的大星云。这个大星云一方面在万有引力作用下逐渐收缩,另外在星云内部出现许多湍涡流。于是大星云逐渐碎裂为许多小星云,其中之一就是太阳系前身,称之为“原始星云”,也叫“太阳星云”。由于原始星云是在湍涡流中形成的,因此它一开始就不停地旋转。 原始星云在万有引力作用下继续收缩,同时旋转加快,形状变得越来越扁,逐渐在赤道面上形成一个“星云盘”。组成星云盘的物质可分为“土物质”、“水物质”、“气物质”。这些物质在万有引力作用下,又不断收缩和聚集,形成许多“星子”。星子又不断吸积、吞并,中心部分形成原始太阳,在原始太阳周围形成了“行星胎”。原始太阳和行星胎进一步演化,而形成太阳和九大行星,进而形成整个太阳系。 对地球起源和演化的问题进行系统的科学研究始于十八世纪中叶,至今已经提出过多种学说。一般认为地球作为一个行星,起源于46亿年以前的原始太阳星云。地球和其他行星一样,经历了吸积、碰撞这样一些共同的物理演化过程。形成原始地球的物质主要是星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。

太古代

太古代离我们久远,是地质发展史中最古老的时期,延续时间长达15亿年,是地球演化史中具有明确地质记录的最初阶段。由于年代久远,太古代的保存下来的地质纪录非常破碎、零散。但是,太古代又是地球演化的关键时期,地球的岩石圈、水圈、大气圈和生命的形成都发生在这一重要而又漫长的时期,大约39亿年前,地球形成最初的永久地壳,至35亿年前大气圈、海水开始形成。

在太古代的最初期,地球上尚无生命出现。生命元素,如C,H,O,N等在强烈的宇宙射线、雷电轰击下首先形成简单有机分子,后发展为复杂有机分子,再形成准生命的凝聚体,进而由凝聚体进化成原始生命。在距今约33亿年前,形成了地球上最古老的沉积岩,大气圈中已含有一定的二氧化碳,并出现了最早的、与生物活动相关的叠层石;到 31亿年前,地球上开始出现比较原始的藻类和细菌。在29亿年前,地球上出现了大量蓝绿藻形成叠层石,这表明这一时期地球上已经出现了游离氧以及行光合作用的原核生物。

经过了天文期以后,地球便正式成为太阳系的成员。大约又经过22亿年,地球发展便进入到地质时期——太古代。这段从46亿年~38亿年的地质时期有哪些特点?

(1)薄而活动的原始地壳:根据资料分析,原始地壳的部分可能更接近于上地幔。硅铝质和硅镁质尚未进行较完全的分异,因此太古代时期的地壳是很薄的,也没有现在这样坚固复杂。由于地球内部放射性物质衰变反映较为强烈,地壳深处的融熔岩浆,不时从地壳深处,沿断裂涌出,形成岩浆岩和火山喷发。当时到处可见火山喷发的壮观景象。因此我们现在从太古代地层中,普遍可见火山岩系。

(2)深浅多变的广阔海洋中散布少数孤岛:当时地球的表面,还是海洋占有绝对优势,陆地面积相对较少,海洋中散布着孤零的海岛,地壳处于十分活跃状态,海洋也因强烈的升降运动,而变得深浅多变。陆地上也有多次岩浆喷发和侵入,使上面局部地区固结硬化,使地壳慢慢向稳定方向发展,因此太古代晚期形成了稳定基底地块——“陆核”。陆核出现,标志地球有了真正的地壳。

(3)富有CO2,缺少氧气的水体和大气圈:太古代地球表面,虽然已经形成了岩石圈、水圈和大气圈。但那时的地壳表面,大部分被海水覆盖,由于大量火山喷发,放出大量的CO2,同时又没有植物进行光合作用,海水和大气中含有大量的CO2,而缺少氧气。大气中的CO2随着降水,又进入到海洋,因此海洋中HCO3-浓度增大。岩浆活动和火山喷发的同时,带来大量的铁质,有可能被具有较强的溶解能力的降水和地表水溶解后带入海洋。含HCO3-高浓度海水同时具有较大的溶解能力和搬运能力,因此可将低价铁源源不断地搬运至深海区,这就是为什么太古代铁矿石占世界总储量60%,矿石质量好,并且在深海中也能富集成矿的原因。

(4)太古代的地层:太古代的地层,都是一些经过变质的岩石,例如片麻岩、变粒岩、混合岩等深变质的岩石。我国太古代地层只分布在秦岭、淮河以北地区。出产鞍山式铁矿的鞍山、吕梁山、泰山、太行山等地均有太古代地层。



太古代(Archeozoic Era,Archeozoic)最古的地质时代。一般指距今46亿年前地球形成到25亿年前原核生物(包括细菌和蓝藻)普遍出现这段地质时期。“太古代”一词1872年由美国地质学家达纳(J.D.Dana)所创用。当时形成的地层叫“太古界”,代表符号为“Ar”。主要由片麻岩、花岗岩等组成,富含金、银、铁等矿产,构成各大陆地壳的核心。主要分布在澳大利亚、非洲、南美的东北部、加拿大、芬兰、斯堪的那维亚等地;我国辽东半岛、山东半岛和山西等地,亦有太古代地层露出。1970~1980年,一批科学家连续报道了在澳大利亚西部诺恩·波尔(NorthPole)地区35亿年前的瓦拉乌纳群(Warrawoonagroup)地层中,发现了一些丝状微化石。这是迄今在太古代地层中发现的、比较可信的最早化石记录。

元古代

元古代早期火山活动仍相当频繁,生物界仍处于缓慢,低水平进化阶段,生物主要是叠层石以及其中分离得到的生物成因有机碳和球状、丝状蓝藻化石,由于这些光合生物的发展,大气圈已有更多的氧气。

在19亿年前,大陆地壳不断增厚,开始发育有盖层沉积,地球表面始终保持着一种十分有利于生命发展的环境。蓝藻和细菌继续发展,到距今13亿年前,已有最低等的真核生物—绿藻出现。在元古代晚期,盖层沉积继续增厚,火山活动大为减弱,并出现广泛的冰川,从此地球具有明显的分带性气候环境,为生物发展的多样性提供了自然条件,著名的后生动物群—澳大利亚埃迪卡拉动物群就出现这个时期。

古生代

古生代(Paleozoic era)——地质年代的第3个代(第1、2个代分别是太古代和元古代)。约开始于5.7亿年前,结束于2.3亿年前。古生代共有6个纪(Period),一般分为早、晚古生代。早古生代包括寒武纪(Cambrian 5.4亿年前)、奥陶纪(Ordovician 5亿年前)和志留纪(Silurian 4.35亿年前),晚古生代包括泥盆纪(Devonian 4.05亿年前)、石炭纪(Carboniferous 3.55亿年前)和二叠纪(Permian 2.95亿年前)。动物群以海生无脊椎动物中的三叶虫、软体动物和棘皮动物最繁盛。在奥陶纪、志留纪、泥盆纪、石炭纪,相继出现低等鱼类、古两栖类和古爬行类动物。鱼类在泥盆纪达于全盛。石炭纪和二叠纪昆虫和两栖类繁盛。古植物在古生代早期以海生藻类为主,至志留纪末期,原始植物开始登上陆地。泥盆纪以裸蕨植物为主。石炭纪和二叠纪时,蕨类植物特别繁盛,形成茂密的森林,是重要的成煤期。

地质年代名称。显生宙(Phanerozoic Eon)的第一个代,距今约5.7亿年至2.3亿年前,占显生宙时期的2/3。包括早古生代的寒武纪、奥陶纪、志留纪和晚古生代的泥盆纪、石炭纪、二叠纪。早古生代是海生无脊椎动物的发展时代,如寒武纪的节肢动物三叶虫、奥陶纪的笔石和头足类、泥盆纪的珊瑚类和腕足类等。最早的脊椎动物无颚鱼也在奥陶纪出现。植物以水生菌藻类为主,志留纪末期出现裸蕨植物。在晚古生代,脊椎动物开始在陆地生活。鱼类在泥盆纪大量繁衍,并向原始两栖类演化。石炭纪和二叠纪时,两栖类和爬行类已占主要地位。植物也进入依靠孢子繁殖的蕨类大发展时期,石炭纪和二叠纪因有蕨类森林而成为地质历史上的重要成煤期。古生代的地壳运动和气候变化深刻影响自然环境的发展。早古生代的地壳运动在欧洲称加里东运动,在美洲称太康运动,在中国又称广西运动。此时古北美、古欧洲、古亚洲、冈瓦纳古陆及古太平洋、古地中海都已形成。晚古生代地壳运动在欧洲称海西(华力西)运动,在北美称阿勒盖尼运动,在中国又称天山运动。经过古生代地壳运动,世界许多巨大的褶皱山系出现,南方的冈瓦纳古陆和北方的劳亚古陆联合在一起,形成泛古陆(联合古陆)。晚古生代在冈瓦纳古陆发生了大规模的冰川作用,大冰盖分布于古南纬60°以内的今南非、阿根廷等地,该冰川作用期即地质历史上的石炭—二叠纪大冰期。古生代的地层总称古生界。

古生代(Paleozoic era)——地质年代的第3个代(第1、2个代分别是太古代和元古代)。约开始于5.7亿年前,结束于2.3亿年前。古生代共有6个纪(Period),一般分为早、晚古生代。早古生代包括寒武纪(Cambrian 5.4亿年前)、奥陶纪(Ordovician 5亿年前)和志留纪(Silurian 4.35亿年前),晚古生代包括泥盆纪(Devonian 4.05亿年前)、石炭纪(Carboniferous 3.55亿年前)和二叠纪(Permian 2.95亿年前)。


太古代(Archeozoic Era,Archeozoic)最古的地质时代。一般指距今46亿年前地球形成到25亿年前原核生物(包括细菌和蓝藻)普遍出现这段地质时期。
太古代离我们久远,是地质发展史中最古老的时期,延续时间长达15亿年,是地球演化史中具有明确地质记录的最初阶段。由于年代久远,太古代的保存下来的地质纪录非常破碎、零散。但是,太古代又是地球演化的关键时期,地球的岩石圈、水圈、大气圈和生命的形成都发生在这一重要而又漫长的时期,大约39亿年前,地球形成最初的永久地壳,至35亿年前大气圈、海水开始形成


元古代早期火山活动仍相当频繁,生物界仍处于缓慢,低水平进化阶段,生物主要是叠层石以及其中分离得到的生物成因有机碳和球状、丝状蓝藻化石,由于这些光合生物的发展,大气圈已有更多的氧气。

在19亿年前,大陆地壳不断增厚,开始发育有盖层沉积,地球表面始终保持着一种十分有利于生命发展的环境。蓝藻和细菌继续发展,到距今13亿年前,已有最低等的真核生物—绿藻出现。在元古代晚期,盖层沉积继续增厚,火山活动大为减弱,并出现广泛的冰川,从此地球具有明显的分带性气候环境,为生物发展的多样性提供了自然条件,著名的后生动物群—澳大利亚埃迪卡拉动物群就出现这个时期。



寒武纪是地质历史划分中属显生宙古生代的第一个纪,距今约5.4亿至5.1亿年,寒武纪是现代生物的开始阶段,是地球上现代生命开始出现、发展的时期。寒武纪对我们来说是十分遥远而陌生的,这个时期的地球大陆特征完全不同于今天。 寒武纪常被称为“三叶虫的时代”,这是因为寒武纪岩石中保存有比其他类群丰富的矿化的三叶虫硬壳。但澄江动物群告诉我们,现在地球上生活的多种多样的动物门类在寒武纪开始不久就几乎同时出现。

奥陶纪(Ordovician Period,Ordovician),地质年代名称,是古生代的第二个纪,开始于距今5亿年,延续了6500万年。

志留纪(Silurian period)是早古生代的最后一个纪,也是古生代第三个纪。本纪始于距今4.35亿年,延续了2500万年。由于志留系在波罗的海哥德兰岛上发育较好,因此曾一度被称为哥德兰系。 志留纪可分早、中、晚三个世。志留系三分性质比较显著。一般说来,早志留世到处形成海侵,中志留世海侵达到顶峰,晚志留世各地有不同程度的海退和陆地上升,表现了一个巨大的海侵旋回。志留纪晚期,地壳运动强烈,古大西洋闭合,一些板块间发生碰撞,导致一些地槽褶皱升起,古地理面貌巨变,大陆面积显著扩大,生物界也发生了巨大的演变,这一切都标志着地壳历史发展到了转折时期。

泥盆纪,地质年代名称,古生代的第四个纪,约开始于4.05亿年前,结束于3.5亿年前,持续约5000万年。“泥盆纪分为早、中、晚3个世,地层相应地分为下、中、上3个统。
早期裸蕨繁茂,中期以后,蕨类和原始裸子植物出现。无脊椎动物除珊瑚、腕足类和层孔虫(Stromatoporoidea,腔肠动物门,水螅虫纲的一个目)等继续繁盛外,还出现了原始的菊石(Ammonites,属软体动物门,头足纲的一个亚纲)和昆虫。脊椎动物中鱼类(包括甲胄鱼、盾皮鱼、总鳍鱼等)空前发展,故泥盆纪又有“鱼类时代”之称。晚期甲胄鱼趋于绝灭,原始两栖类(迷齿类(Labyrinthodontia)(亦称坚头类)开始出现

石炭纪(Carboniferous period)是古生代的第5个纪,开始于距今约3.55亿年至2.95亿年,延续了6000万年。石炭纪时陆地面积不断增加,陆生生物空前发展。当时气候温暖、湿润,沼泽遍布。大陆上出现了大规模的森林,给煤的形成创造了有利条件。

二叠纪(Permian period)是古生代的最后一个纪,也是重要的成煤期。二叠纪分为早二叠世, 中二叠世和晚二叠世。二叠纪开始于距今约2.95亿年,延至2.5亿年,共经历了4500万年。二叠纪的地壳运动比较活跃,古板块间的相对运动加剧,世界范围内的许多地槽封闭并陆续地形成褶皱山系,古板块间逐渐拚接形成联合古大陆(泛大陆)。陆地面积的进一步扩大,海洋范围的缩小,自然地理环境的变化,促进了生物界的重要演化,预示着生物发展史上一个新时期的到来。



中生代

中生代(Mesozoic Era;距今约2.5亿年~距今约6500万年)

显生宙第二个代,晚于古生代,早于新生代。这一时期形成的地层称中生界。中生代名称是由英国地质学家J.菲利普斯于1841年首先提出来的,是表示这个时代的生物具有古生代和新生代之间的中间性质。自老至新中生代包括三叠纪、侏罗纪和白垩纪。

中生代时,爬行动物(恐龙类、色龙类、翼龙类等)空前繁盛,故有爬行动物时代之称,或称恐龙时代。中生代时出现鸟类和哺乳类动物。海生无脊椎动物以菊石类繁盛为特征,故也称菊石时代。淡水无脊椎动物,随着陆地的不断扩大,河湖遍布的有利条件,双壳类、腹足类、叶肢介、介形虫等大量发展,这些门类对陆相地层的划分、对比非常重要。

中生代植物,以真蕨类和裸子植物最繁盛。到中生代末,被子植物取代了裸子植物而居重要地位。中生代末发生著名的生物绝灭事件,特别是恐龙类绝灭,菊石类全部绝灭。有人认为生物绝灭事件与地外小天体撞击地球有关,但真正原因有待进一步研究确定。

古生代末期,联合古陆的形成,使全球陆地面积扩大,陆相沉积分布广泛。中生代中、晚期,联合古陆逐渐解体和新大洋形成,至中生代末 ,形成欧亚 、北美 、南美、非洲、澳大利亚、南极洲和印度等独立陆块。并在其间相隔太平洋、大西洋、印度洋和北极海。

中生代中、晚期,各板块漂移加速,在具有俯冲带的洋、陆壳的接触带上俯冲、挤压,导致著名的燕山运动(或称太平洋运动),形成规模宏大的环太平洋岩浆岩带、地体增生带和多种内生金属、非金属矿带。中生代气候总体处于温暖状态,通常只有热带、亚热带和温带的差异。

新生代

新生代(距今6500万年~今)Cenozoic Era

地质历史上最新的一个代,显生宙的第三个代。这一时期形成的地层称新生界。新生代以哺乳动物和被子植物的高度繁盛为特征,由于生物界逐渐呈现了现代的面貌,故名新生代(即现代生物的时代)。1760年,意大利博物学家G.阿尔杜伊诺在研究意大利北部地质时,把组成山系的地层分为3个系:第一系为结晶岩,第二系为含化石的成层岩石,第三系为半胶结的层状岩石,常含海相贝壳。1829年,法国学者J.德努瓦耶研究巴黎盆地时,把第三系之上的松散沉积层称为第四系。第一系、第二系的名称已废弃不用,第一系大致相当前寒武系,第二系相当于古生代和中生代的地层。新生代包括第三纪和第四纪,第三纪又可分为早第三纪和晚第三纪,纪可再划分为几个世(见表)。

新生代开始时,中生代占统治地位的爬行动物大部分绝灭,繁盛的裸子植物迅速衰退,为哺乳动物大发展和被子植物的极度繁盛所取代。因此,新生代称为哺乳动物时代或被子植物时代。哺乳动物的进一步演化,适应于各种生态环境,分化为许多门类。到第三纪后期出现了最高等动物——原始人类。原始人类起源于亚洲或非洲。



http://baike.baidu.com/pic/13/11636876349541548.jpg

太阳系诞生之初,是以巨大并不断旋转的由尘埃与气体组成的云团的形态存在。它是由大爆炸所生成的氢与氦组成,同时亦有着由很久以前的星球内部所合成的其它元素。

地球诞生前十五至三十分钟(等于大约四十六亿年前),一个邻近的恒星可能形成了超新星爆炸。这对太阳星云传送了一个震荡波,并使之收缩。

因为云团旋转,引力与惯性将云团压为一个圆碟,与其旋转轴成垂直。大部份质量集中在中央并开始加热。与此同时,因为引力使得物质环绕尘埃粒子紧缩,使得圆碟剩余部份开始分解为环状物。细少的碎片互相碰撞并组成较大的碎片。[2] 而组成的地球物质并众集在距中央约一亿五千万公里的地带。当太阳收缩并被加热,核融合开始,而因此形成的太阳风则清空了在圆碟内大部份没有收缩并组成较大个体的物质,只剩下少量的元素。

之后,较重的元素聚集于太阳附近,形成了体积小,密度高的星体(类地行星);较轻的元素则聚集于离太阳较远的地方,形成了体积大,密度低的星体(类木行星),而地球则是距离太阳第三近的行星。

[编辑] 月球
表述忒亚在地球的L5点形成,并且被重力所扰乱,而撞向地球,从而形成月球的动画(未按比例)。此动画将月球形成的过程假设成一年内,并假设地球不会移动,及以南极为视角。主条目:月球和巨大撞击假说
月球的起源仍然众说纷纭,但以巨大撞击假设的支持证据最多。地球可能并非惟一的在距离太阳一亿五千万公里处生成的行星。所以科学家们假设了另一颗原始行星在距离太阳与地球一亿五千万公里处,即第四个或第五个拉格朗日点处形成。此行星被命名为忒亚,并假设其较现在的地球为小,大约为火星的大小与质量。其运行轨道刚开始时应该较为稳定,但其后被不断增加质量的地球所扰乱。忒亚开始回转并向地球靠拢,最后在大约为假设时钟的上午0时11分[3](大约四十五亿三千三百万年前),其以一个低斜的角度与地球发生碰撞。其低速与低角度并不足以毁灭地球,但足以使大部份地壳被喷出。构成忒亚的重金属沉入地球的地核内,而剩余的物质与喷出物则在数周内冷碍为一个独立个体。在其自身的重力影响下,大约于一年内,其成为一个较为球状的个体,即是月球。[4] 而人们亦相信这次撞击使地球的自转轴倾斜了23.5°,使地球出现四季。(一个简单,完美的星体应是自转轴没有倾斜并没有分明的季节。)其亦可能加速了地球的自转速度并使地球出现了板块构造。

[编辑] 冥古宙主条目:冥古宙

在地球早期历史里,火山爆发是经常发生的事。冥古宙早期地球与现在的世界十分不同。当时没有海洋,大气层里亦没有氧气。小行星与太阳系形成后余下的物质不断撞击。这些撞击与放射性崩解产生的热、残热与收缩压力产生的热相结合,使得地球在这阶段完全为熔化状态。较重的元素沉向中心,而较轻的元素则升至表面,从而制造了地球的不同层次(请参看“地球构造”)。地球的早期大气层包括了围绕其存在的太阳星云里的物质,特别是较轻的气体如氢与氦,但是太阳风与地球自身的热力清空了这层大气层。地球表面慢慢地冷凝,在(大约为假设时钟)的上午0时47分形成了固体的地壳(一亿五千万年内)[5]。在大约是假设时钟的上午3时至4时(四十亿至三十八亿年前),地球经历了一个重型星体撞击时期。[6]蒸气由地壳里逃出,而更多的气体由火山内释出,从而形成了第二道大气层。更多的水份在火流星撞击地球时带来。这时地球开始冷却,在三十八亿年前;假设时钟的上午4时(七亿五千万年内)云层开始形成,雨水落下从而形成海洋,而且可能更早时已出现这些现象。(最近的证据提出海洋可能在四十二亿年前开始形成,即此条目假设时钟的上午1时50分。)[7]这道新的大气层可能包含了氨、甲烷、水蒸气、二氧化碳、氮气与其他含量较少的气体。而氧气则被氢气或地表上的矿物质束缚著。火山活动出现频密,而且因为没有臭氧层防护,紫外线大量照射在地球表面。

[编辑] 生物时钟如果把漫长的地球历史澧缩至一小时,那么动物是直到最后十五分钟才出现的。而陆生动物则是在倒数六分钟时才出现的。爬行动物时代在这一小时快走完时,才持续不过两分多钟。

[编辑] 生命的起源
所有已知生物的复制子皆是DNA。DNA较原来的复制子复杂而且 其组成的复制子系统更为精细。主条目:生命起源
生命起源的详情仍是未知之数,然而仍有主要的原理被建立。一派科学家认为生命,或至少是有机化合物,可能是来自外太空(请参看“生物发生说”);然而一般认为生命起源于地球。[8] 大部份科学家认为生命是在地球上自然孕育,但生命出现的时间却极不确定;可能在大约四十亿年前(此条目假设时钟的上午3时)。[9]在地球早期的能量化学里,有一个分子(可能是其他东西)获取了自我复制的能力:复制子。此分子的性质并不清楚,其被现在生命的复制子DNA取代前,曾是生命的主要复制子。这个复制子在自我复制的过程里并非经常正确地复制:部份复制品包含了“错误”。如果这种转变消灭了分子的复制能力,则将不会有更多的复制品,而这条生命线将会灭绝。但在另一方面,少数变化使得分子的复制变得更快或更佳;这些“品系”的数量较多也较“成功”。当原料(其角色类似食物)消耗殆尽后,这些品系会利用其他物质,且可能会抑制其他品系的生长,使其数量增加。[10]少数不同的模型提出了复制子可能发展的方法。假设有不同的复制子,包括有机化合物如现代核酸里的蛋白质、磷脂、结晶体等,[11]甚至是量子系统。[12] 现在并没有方法知道何种模型更为符合地球生命的起源。在众多较旧的理论里其中一条理论,与一条详细研究过的理论,会作为范例来解释其发生的可能性。火山、闪电与紫外线幅射释出的高能会使得简单化合物如甲烷与氨通过化学反应组合成较为复杂的分子[13]众多的有机化合物组成了生命的基础。当这种“有机汤”的数量增加,不同的分子互相发生反应。有时更多复杂的分子可能会出现;可能肉体提供了一个框架来收集与与集中有机物。 [14]部份分子的存在会加速了化学反应。而所有这些反应持续了很长时间,时多时少,直至一个新分子机缘巧合地出现:复制子(replicator)。其有着奇怪的特质,可以加速自我复制的化学反应,并开展生物进化。其他理论假一个不同的复制子。在任何情况,DNA在每一点均取代了复制子的功能;所有已知生命(部份病毒与普利昂蛋白除外)皆以DNA为遗传物质,且几乎都以相同方法作为讯息的编码。

[编辑] 细胞
细胞膜的一小部份。此现代的细胞膜远较古代的双层磷脂(图中之蓝色部分)复杂。蛋白质与碳水化合物经由细胞膜有不同的调节物质通过的功能,并且与周围环境产生反应。现代的生命的复制子是整齐地包装在细胞膜内的。而理解细胞膜的起源较理解复制子的起源容易,因为组成细胞膜的磷脂分子在置放于水中时经常会自发地形成一道双层膜。在特定环境下,很多这样的球体因此而形成(请参看“气泡理论”)。[15]现在无法得知此过程是早于或延续复制子的起源(或可能其在过去就是复制子)。现在主流的意见是该复制子,在这点可能是RNA(请参看RNA世界学说),与其自我复制的器具和其他可能的生物分子已进化出来了。最初时原始细胞可能在其生长得过于巨大时发生爆裂;而四散的物质则可能重新殖民于其他“气泡”。稳定细胞膜的蛋白质,或其后协助其变得井然有序的蛋白质,使得这些细胞线的繁衍速度加快。RNA是较有可能的早期复制子之一,能同时储存遗传资讯与加速反应。在同一点上,DNA取代了RNA储存遗传资讯的角色,而蛋白质则是作为加速反应的酵素存在,RNA则只负责传送资讯并调节其过程。越来越多人相信这些早期细胞的进化与名为“黑烟囱”的海底火山爆发有关。[16]或是深层而热的岩石。[17]然而,现在普遍相信众多细胞或原始细胞里,只有一种细胞存活。现有证据指出最后普遍共同祖先(LUCA)在早期太古代生存,假设时钟的上午5时30分(大约为三十五亿年前)或更早。[18],[19]这个“最后普遍共同祖先”细胞是所有细胞的祖先,亦即是地球上所有生命的祖先。其可能为一个原核生物,拥有一层细胞膜,亦可能拥有核糖体,但欠缺了细胞核或真核细胞有膜状胞器如线粒体或叶绿体。就如所有现代细胞,亦使用DNA储存遗传基因,RNA作资讯传送与蛋白质合成,并拥有酵素作加速反应的用途。部份科学家相信与其说最后普遍共同祖先是单一个体,不如说其为在横向基因转移(lateral gene transfer)里的众多交换遗传基因资讯的族群。

[编辑] 光合作用与氧
太阳的能量为地球上的生命带来了一些主要改变。最初的细胞相信全是异养生物,使用周围的有机分子(包括由其他细胞得来的有机分子)来作为原料与能量来源。[20] 但食物供应渐渐减少,部份细胞进化出新的生存战略。与其依靠逐渐减少的自由存在的有机分子,这些细胞选择了太阳光作为能量来源。这个转变的时间难以确测,但大约为假设时钟的上午8时[21] (大约为三十亿年前),与现在的光合作用相类的功能在此刻可能已发展出来了。这使得太阳的能量不只被自营生物采用,而异养生物亦能摄取太阳能量。光合作用使用含量丰富的二氧化碳与水作为原料,配以太能光的能量,产生了富能量的有机分子(碳水化合物)。此外,光合作用过程亦生成了氧气。最初其在海洋里与石灰岩、铁和其他矿物质结合,但当所有可利用的矿物皆已与其结合,氧气开始冒出水面在大气层里积聚。虽然每一个细胞只会产生少量氧气,但积少成多,经过长时间,大量细胞的新陈代谢作用慢慢地使地球大气层变为现在的状态。[22]这就是地球的第三道大气层。部份氧气变为臭氧,并在大气层上方凝聚,就是现在的臭氧层。臭氧层不断吸收大量的紫外线,这使得细胞可以殖民至海洋表面并最终殖民至地上:[23]没有臭氧层,紫外线会大量照射至地球表面,并使得受到照射的细胞产生不可承受的突变。而光合作用除了可以制造大量能量供细胞生存与隔开紫外线,其亦有着第三个主要的、使得世界改变的作用。氧气是有毒的,其含量的上升可能在当时使得地球上大量的生命死亡(“氧气灾难”)。[23]而有抵抗能力的生命则存活并繁衍,部份更发展出使用氧气来增进其新陈代谢作用的速度,并能由相同食物里摄取更多的能量。

[编辑] 内共生与三域生物主条目:内共生学说

不同的胞内"内共生生物"出现的几种可能的方法。现代生物分类学将生命分为三域。而这三域生物的起源时间则未被确定。细菌域可能首先由其他生命的形式分裂出来(有时称为Neomura),但此说法极具争议。接着,在大约是假设时钟的下午2时[24](大约二十亿年前),Neomura分裂为古菌与真核生物。核细胞(真核生物)较大并且较原核细胞(细菌与古菌)复杂,而这复杂性的起源正在被逐步了解。在这段时期,一个与今天的立克次病原体有关系的细菌细胞[25]进入了一个较大的原核细胞。可能该大细胞尝试摄取较细的细胞但却失败了(可能因为其防止被猎食功能进化了)。可能该较细的细胞尝试寄生于较大的细胞。在任何情况下,较细的细胞在较大的细胞里存活。其使用氧气以引起该较大细胞所释出的废物的代谢作用,并产生更多能量。这种过剩的能量部份会给回主细胞。该细细胞在较大的细胞里自我复制,并很快地发展出一个稳定共生关系。久而久之,主细胞取得了部份较细的细胞遗传资讯,而其两者则开始互相依赖:輁大的细胞不能在没有较细的细胞制造能量的情况下生存,而较细的细胞则不能在没有较大的细胞提供原料的情况下存活。较大的细胞与在其内大量繁衍的较细的细胞建立了共生关系,其两者因此被当为单一有机体,较细的细胞被分类为细胞器,名为线粒体。一个相类的情况在有着光合作用的蓝菌上出现[26]并进入较大的异养生物的细胞,其后发展为叶绿体。[27],[28]可能是这些转变得出的结果,真核生物里分出一条容许光合作用的系列,这大约发生在十亿年前(大约是此条目假设的时钟的下午6时)。除了已建立的关于线粒体与叶绿体的细胞起源的内共生说外,亦有说法指细胞引起了氧化小体,螺旋体引起了纤毛与鞭毛,而一个脱氧核糖核酸病毒引起了细胞核,[29],[30]但没有任何一个学说被普遍接受。[31]在这段时期,超级大陆哥伦比亚大陆在地球上形成,大约是十八亿至十五亿年前(此条目假设时钟的下午2时30分至下午4时);其是最古老的假设超级大陆。[32]

[编辑] 多细胞体File:Volvox aureus.jpg
团藻 (Volvox aureus) 相信是与最初的多细胞植物相类。古菌、细菌与真核生物持续地多样化并变得更为复杂和更能适应其生存环境。每一个域皆重复地分裂为多个世系,不过古菌与细菌的历史仍所知不多。此条目假设的时钟的下午6时15分(大约在十一亿年),超级大陆罗迪尼亚大陆(Rodinia)正在形成。[33]植物、动物与真菌的被分类,虽然其仍以单独细胞形式存在。部份生活在菌丛,并开始有着分工合作;举例来说,边缘的细胞所负担的工作与内部的细胞有所不同。虽然特定细胞与一个多细胞有机物的菌丛内的分工并非经过分明,但是在大约是假设时钟的下午7时[34](大约十亿年前),第一颗多细胞植物出现,可能是绿藻。[35]假设时钟的下午7时15分(大约在九亿年前),[36]真正的多细胞体在动物界里出现。最初其可能与今天的海绵动物相类,所有的细胞皆为全能细胞且是一个能重组合的破裂有机物。[37]当所有多细胞有机物的分工合作机用更为完善时,细胞开始变得更为专门化并且更依靠其他细胞;单独的细胞将会死亡。很多科学相信严苛的冰河时期在大约七亿七千万年前(此条目假设时钟的下午7时56分),地球上所有的海洋表面完全被冰封(雪球世界)。最终地,在假设时钟的下午8时2分(二亿年后),经由火山爆发释出足够的二氧化碳,造成了温室效应,使得全球变暖。[38]大约在同一时间,即七亿五千万年前,[39]罗迪尼亚大陆开始分裂。

[编辑] 海洋生命登陆
在地球历史上大部份时间里,陆地上并没有多细胞有机物。正如上述所言,地球大气层里氧气的积聚令臭氧层形成,其吸收了大部份太阳照射至地球的紫外线。其使得单细胞的有机物在着陆后的死亡机会大降,而原核生物则能更佳地在没有水份的环境里复制与存活。原核生物大约在二十六亿年前殖民陆地[40](此条目假设的时钟上午10时17分),这比真核生物起源的时间更早。在一段很长的时间里,陆地上只有极少量的多细胞有机会。超级大陆潘诺西亚大陆在大约是假设时钟的下午8时50分形成至9时5分分裂[41](大约六亿年前至五千万年后)。而最早的脊椎动物鱼类则在大约五亿三千万年前出现在海洋上[42](此条目假设的时钟的下午9时10分)。一个主要的灭绝事件在寒武纪末期发生[43]而这灭绝事件在大约四亿八千八百万年前停止[44](此条目假设的时钟的下午9时25分)。

数亿年前,植物(可能是藻类)与真菌开始在水与陆地的边缘,并于其后离开水域而生存。[45]经测定最古老的陆地真菌与植物的化石后,得知其该在大约在四亿八千万年至四亿六千万年前生存(此条目假设的时钟的下午9时28分至9时34分),虽然分子的证据显示真菌可能早于十亿年前(此条目假设的时钟的下午6时40分)已殖民陆地;而植物早于七亿年前已殖民陆地(此条目假设的时钟的下午8时20分)。[46]刚开始时仍是在水域边缘存活,但是在此新环境里的持续殖民使得突变与变化开始出现。而首只离开海洋的动物的时间则并不准备地得知,所知的最明确、最古老的证据指出节肢动物大约在四亿五千万年前在陆地出现[47](此条目假设的时钟的下午9时40分),其能在陆地繁盛与更佳地的适应的原因可能是陆地上的植物提供了大量的食物来源。而亦有一些不能确定的证据指节肢动物可能早于五亿三千万年前已在陆地上出现[48]在奥陶纪末前,即四亿四千万年前(此条目假设的时钟的下午9时40分),另一次灭绝事件发生,可能是与其同时的冰河时期所造成的结果。[49]大约在三亿八千万年至三亿七千五百万前(此条目假设的下午10时),首个四足动物由鱼类进化而成。[50]人们估计因为鱼翅进化为四肢使得首个四足动物可以使其头部离开水域并呼吸空气。这使其可以在缺氧的水域里生存或在浅水区追捕猎物。[50]其可能在其后的一段岁月里在陆地进行冒险。其最后有部份可能变得十分适应陆地生活并在成年时在陆地上生活,虽然其在水里孵化并在水里生蛋。这是两栖类动物的起源。在大约三亿六千五万年前(此条目假的时钟的下午10时4分),另一个灭绝事件出现发生,这可能是因为全球冷化的结果。[51]植物开始包含种子,使其在陆地上繁衍的速度大增,大约在三亿六千万年前(此条目假设的时钟的下午10时)。[52], [53]

盘古大陆,最近期的超级大陆,在大约三亿年至一亿八千万年前存在。在此地图上标示了现在各大洲与其他土地的所占部份。大约在二千万年后(三亿四千万年前;[54]此条目假设的时钟的下午10时12分),羊膜卵的进化使得蛋可以在陆地上诞下,这是四足动物胚胎的生存优势。这使得羊膜动物由两栖类动物分离出来。再经过三千万年后(三亿一千万年前;[55]此条目假设的时钟的下午10时22分),由蜥形类(包含了鸟类与非鸟类、非哺乳类爬行动物)里分离出合弓纲(包含了哺乳动物)。其他分类的生物当然也在不断进化并分离成:鱼类、昆虫、细菌,但详情则不太知晓。三亿年前(此条目假设的时钟下午10时25分),最近期的超级大陆盘古大陆形成。最严峻的灭绝事件在二亿五千万年前(此条目假设的时钟下午10时40分)发生,在二叠纪与三叠纪交界;95%地球上的生物死亡,[56]这可能是西伯利亚暗色岩(Siberian Traps)的火山不断爆发的影响。但生命仍未完全灭绝,有小部份生命继续生存,在大约二亿三千万年前[57](此条目假设的时钟的下午10时47分),恐龙由其爬虫类祖先分离出来。大部份恐龙成功在二亿年前(此条目假设的时钟的下午10时56分)的三叠纪-侏罗纪灭绝事件里存活下来,[58]而其很快便成为脊椎动物里的霸主。虽然在此时期有部份的哺乳类动物分离出来,存在的哺乳类全都是细小的动物如鼩鼱。[59]在一亿八千万前(此条目假设的时钟下午11时3分),盘古大陆分裂为劳亚古大陆(Laurasia)与冈瓦纳大陆(Gondwana)。鸟类与非鸟类恐龙的分界并不清晰,但始祖鸟这一传统上被认为是首种鸟类的动物,则在一亿五千万年前生活着[60](此条目假设的时钟的下午11时12分)。证据显示最早的会开花的被子植物在白垩纪出现,而在大约二千万年后(一亿三千二百万年前,此条目假设的时钟的下午11时18分)[61]很多翼龙在与鸟类的竞争里败下阵来,而被灭绝了,而恐龙的霸权亦可能因为很多原因而已经在衰退[62]在六千五百万年前(此条目假设的时钟的下午11时39分),一个直径长10公里的陨石撞向地球上的犹卡坦半岛,将大量的物质与蒸气释放至空气里,使得太阳光被阻隔,妨碍了光合作用。很多大型动物,包括了非鸟类恐龙从此灭绝。[63],这亦标志着白垩纪与中生代的结束。此后地球进入了古近纪的新纪元,哺乳类动物的分类大幅增多,大量繁衍,并成为脊椎动物的霸主。可能在数百万年后(大约六千三百万年前;此条目假设的时钟的下午11时40分),所有灵长类动物的最后共同祖先出现。[64]在始新世的末期,大约三千四百万年前(此条目假设的时钟的下午11时49分),部份陆地上的哺乳类动物回归海洋并成为如古蜥鲸属般的动物,其后演变为海豚与鲸鱼。[65]

[编辑] 人类的出现
一个早期的原人,南方古猿。主条目:人类演化
在六百万年前(此条目假设的时钟的下午11时58分),少量生存在非洲的类人猿为现代人类与其亲戚黑猩猩的最后共同祖先。[66]其家族只有两个分支仍然存活。在其家族分离后不久,因为某些仍在争论的原因,类人猿的一支发展出了站立步行的能力。[67]其脑部迅速地变大,而在大约二百万年前(此条目假设的时钟下午11时59分22秒,或午夜前38秒),人属里的首个动物出现。[68]每一代有机生物的种类,甚至是属皆可能有所不同。在大约相同时间,另一支分支则分裂为普通黑猩猩(common chimpanzee)的祖先与倭黑猩猩(bonobo)的祖先,这种进化仍不断在所有生命里进行。[66]直立人(Homo erectus)最晚在七十九万年前掌握了控制火的能力[69],但可能早于一百五十万年前已经掌握了[70](此条目假设的时钟的最终28秒至15秒)。对于语言起源的考究更为困难;因为难以得知直立人(Homo erectus)是否已能说话,还是直至智人(Homo sapiens)时才被有说话的能力。[71]随着脑的体积增大,婴儿生产的速度增快,在其头部成长得大于骨盆前便要出生。因此其适应力较高,并拥有更高的学习容量,但依赖他人的时间也为之加长。社交技巧变得更为复杂,语言变得更为先进,而工具变得更为精细。这为长远的合作与脑部发展作出了贡献。[72]解剖学上的现代人类-“智人”(Homo sapiens)相信是在二十万年前(此条目假设的时钟的最终2秒)或更早时期于非洲某处诞生;最古老的智人化石可追朔至十六万年前。[73]首个有证据显示拥有精神活动的人类为尼安德塔人(Neanderthal)(通常被归类为没有后代的独立分类);其会在别人死后埋葬其尸身,通常亦会以食物或工具作陪葬物。[74]然而,拥有更复杂的信念的人类的证据,如早期克罗马侬人(Cro-Magnon)的洞穴壁画(可能有着魔幻或信仰的重要性)[75]直至三万二千年前(此条目假设的时钟的最终0.6秒)才出现。[76]克罗马农人亦有着石制小雕像如维伦多夫维纳斯(Venus of Willendorf),可能亦有着信仰的含义。[75]在一万一千年前(此条目假设的时钟的最终0.2秒),部份“智人”抵达了南美洲的南端,最晚有人居住的大陆。[77]这时人类使用的工具与语言继续在改进;而人际关系亦变得更为复杂。

[编辑] 文明的形成主条目:世界历史
在智人的历史里,九成以上时间皆是在过著游牧的猎人与采集者的生活。[78]以随着语言变得更为复杂,用来记忆和传送资讯的功能以一个新的复制子取代:弥(meme)。[79]其想法可以迅速地与下一代交换或单向传送至下一代。文化演进很快便在速度上超过了生物演化,而人类的历史在此时开始。大约在公元前八千五百年至七千年(此条目假设的时钟的最终0.20秒至0.17秒),在美索不达米亚(Mesopotamia)的肥沃月弯(Fertile Crescent)的人类开始了系统化的农业与畜牧业[80].其向四周的区域散播,并在别处独立发展。人类不再过著游牧生活,而开始永久定居下来。农牧的相对安全与高生产率使得人口开始膨胀。农牧业有一个主要影响;人类开始前所未有地影响四周的环境。过多的食物容许祭司与统治阶级的出现,这是分工合作的结果。这使得人类历史上首个文明于公元前四千年至三千年(此条目假设的时钟的最终0.10秒)在中东的苏美出现。[81]古埃及与古印度河谷文明亦迅速地冒起。

达芬奇的维特鲁威人(Vitruvian Man)为文艺复兴时期艺术与科学复兴的缩影。由公元前三千年(此条目假设的时钟的最终0.09秒),现存最古老的宗教印度教开始形成。[82] 其他地区亦在不久后跟随。而书写的发明使得复杂的社会变得可能:历史纪录与图书馆作为智识的仓库和文明间的资讯传送的增加。人类不再需要将其所有时间用作求生、求知欲与教育促进了人类的知识与智慧。不同的学科,包括科学出现了。新的文明出现,并与其他文明进行贸易、争夺领土与资源的战争,而帝国亦开始形成。在公元前五百年(此条目假设的时钟的最终0.048秒),中东、印度、中国与希腊地区出现了帝国;一个新帝国兴起,旧的帝国便覆亡。[83]

在公元十三世纪时(此条目假设的时钟的最终0.012秒),意大利出现了涉及宗教、艺术与科学各领域的文艺复兴。[84]由公元1500年(此条目假设的时钟的最终0.0096秒)开始,欧洲文明开始了科学与工业的革命:欧洲大陆上的国家开始在政治上与文化上影响世界上其他各洲的国家。[85]在公元1914年至1918年(此条目假设的时钟的最终0.0017秒)与公元1939年至1945年(此条目假设的时钟的最终0.0012秒),地球上发生了两次世界大战。紧随着第一次世界大战的结束,人类便开始了建设世界政府的首步,建立国际联盟;而在第二次世界大战后由联合国取代。在公元1992年,部份欧洲国家共同组成了欧洲联盟。国家间的交流与物资传送变得更为简单、政治与经济间的相互影响变得更大。各国进行全球化的步伐并不协调,但相互的合作仍日益增加。

[编辑] 现代世界
经过四十五亿年,地球上的其中一种生命—人类打破了生物圈的自由。在此条目假设的二十四小时的最后百万分之一秒内,地球上的转变得十分快速,由公元1950年代中期至今天。人类对环境的影响受到的关注日益增多,人类亦开始采取必要的措施来限制或还原这些损害;而人类亦开始关注将会降临的全新世灭绝事件与全球暖化。悲观者认为现时对于生态大灾难的防避为时已晚;而乐观者则认为不断革新的科学与技术会提供解决方法。

所有近期的科学发现皆认为遗传工程可能最为重要。人类现在可以直接修改其他生物的遗传物质,这是完全摆脱自然控制的程序。除此以外:科学已解开了智人本身的遗传密码。

来自于上帝之手

我也很想知道啊

至今不明

足球的起源和发展历史
答:中国的“蹴鞠”,被阿拉伯人传到了欧洲,经过欧洲的传播和改变,最终在英国形成了现代足球,并代替古代足球,继续发展,最终成为现在三大球类之一。足球是一项以脚为主,控制和支配球,两支球队按照一定规则在同一块长方形球场...

足球的辉煌历史1200字
答:【足球的历史】公元前307年,也就是战国时期,赵武灵王改革,推行“胡服骑射”,赵国人学会了骑马射箭。赵王经常带着其亲信骑着马出城闲逛,好不威风。一日,来到一树林,看到林中有野兔数只,国王金口一开,“抓活的”,...

足球的起源和发展历史
答:古代蹴鞠足球运动是一项古老的体育活动,源远流长。最早起源于我国古代的一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球。在中世纪的英国,足球以成为许多年轻人所热衷的一项活动。他们在狭窄的街道上追逐皮球...

足球的历史简介
答:简介:足球起源于中国,古时叫蹴鞠,现代足球起源于英国。1、中国古代战国时期的齐国,当时把足球名为“蹴鞠”,汉代蹴鞠是训练士兵的手段,制定了较为完备的体制。如专门设置了球场,规定为东西方向的长方形,两端各设六个对...

篮球的发展历史是什么?
答:篮球运动是1891年由美国人詹姆斯·奈史密斯发明的。当时,他在马萨诸塞州斯普林菲尔德基督教青年会国际训练学校任教。由于当地盛产桃子,这里的儿童又非常喜欢玩将球投入桃子筐的游戏。这使他从中得到启发,并博采足球、曲棍球等...

足球有多少年历史了
答:6000年历史 足球起源 现代足球是英国人一百多年前发明的,最早的足球是谁发明的?很多人都认为是中国的蹴鞠.但蹴鞠却不是最早的,出土于美国西南部的一种石球有6000年历史。它与如今土著美洲人玩的两种游戏很相似:一种是...

你了解足球比赛用球的进化史吗?求科普
答:1970 的这款世界杯用球名为 TelStar,中文名为泰事达,同时这也是一颗通讯卫星的名字。它的表面由 32 块手缝的嵌面组成,其中有 12 块黑色五角形和 20 块白色的六角形,奠定了足球的经典外观。

乒乓球的历史和起源
答:1、乒乓球起源于英国。19世纪末,欧洲盛行网球运动,但由于受到场地和天气的限制,英国有些大学生便把网球移到室内,以餐桌为球台,书作球网,用羊皮纸做球拍,在餐桌上打来打去。1890年,几位驻守印度的英国海军军官偶然...

足球有多少年历史了
答:现代足球大约有200多年的历史了。现代足球起源地是在英国。1862年,在英国诺丁汉郡成立了世界上第一个足球俱乐部。在英国又成立了第一个足球协会(英足总),并统一了足球规则,人们称这一天为现代足球的诞生日。足球,有“...

网球的起源与发展历史
答:近代网球起源于英国。1873年,会打古式网球的英国少校温菲尔德(Walter Clopton Wingfield),在羽毛球运动的启示下,设计了一种适用于户外的、男女都可以从事的网球运动,当时叫做司法泰克(Sphairistike,意思为击球的技术)。...