速算技巧

供稿:hz-xin.com     日期:2025-01-15
速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

扩展资料:
加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀,本位相减(针对借位数)加减补,前位相减多减一,就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
参考资料来源:百度百科-速算

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。



扩展资料:加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
算嬗数(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算

一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?

这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:积个位上的

数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十

位数字的积。例如:

12X14=168 1=1X1 6=2+4 8=2X4

如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。

~例如:

14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1

试着做做看下面的题:

12X15=? 11X13=? 15X18=? 17X19=?

二、几十一乘以几十一的速算方法

例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81=

这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位

和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到

几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的

和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十

位数的和的个位数,最后写一个1 就一定正确。

我们来看两个算式:

21×61=

41×91=

用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。

第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。

第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。

试试上面题目吧!然后再看看下面几题

61×91= 81×81= 31×71= 51×41=

三、10-20的两位数乘法及乘方速算

方法:尾数相乘,被乘数加上乘数的尾数(满十进位)

【例1】 1 2

X 1 3

----------

1 5 6

(1)尾数相乘2X3=6

(2)被乘数加上乘数的尾数12+3=15

(3)把两计算结果相连即为所求结果

【例2】 1 5

X 1 5

------------

2 2 5

(1)尾数相乘5X5=25(满十进位)

(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22

(3)把两计算结果相连即为所求结果

四、两位数、三位数乘法及乘方速算

a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘

【例1】 5 4

X 5 6

---------

3 0 2 4

(1)尾数相乘4X6=24直接写在十位和个位上

(2)首数5加上1为6,两首数相乘6X5=30

(3)把两结果相连即为所求结果

【例2】 7 5

X 7 5

----------

5 6 2 5

(1)尾数相乘5X5=25直接写在十位和个位上

(2)首数7加上1为8,两首数相乘8X7=56

(3)把两计算结果相连即可

b.尾数是5的三位数乘方速算

方法:尾数相乘,十位数加一,再将两首数相乘

【例】 1 2 5

X 1 2 5

------------

1 5 6 2 5

(1)尾数相乘5X5=25直接写在十位和个位上

(2)首数12加上1为13,再两数相乘13X12=156

(3)两计算结果相连

c.任意两位数乘法

方法:尾数相乘,对角相乘再相加,首数相乘

【例】 3 7

X

X 6 2

---------

2 2 9 4

(1)尾数相乘7X2=14(满十进位)

(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)

(3)首数相乘3X6=18加上十位进上的4为18+4=22

(4)把计算结果相连即为所求结果

b.任意两位数及三位平方速算

方法:尾数的平方,首数乘尾数扩大2倍,首数的平方

[例] 2 3

X 2 3

---------

5 2 9

(1)尾数的平方3X3=9(满十进位)

(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)

(3)首数的平方2X2=4加上十位进上的1为5

(4)把计算结果相连即为所求结果

c.三位数的平方与两位数的平方速算方法相同

[例] 1 3 2

X 1 3 2

------------

1 7 4 2 4

(1)尾数的平方2X2=4写在个位

(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)

(3)首数的平方13X13=169加上十位进上的5为174

(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗

五、大数的平方速算

方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),

再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4

X 9 4

-----------

8 8 3 6

(1)94与100相差为6

(2)差数6的平方36写在个位和十位上

(3)用94减去差数6为88写在百位和千位上

(4)把计算结果相连即为所求结果

55 × 55 = ? 27 × 23 = ? 91 × 99 = ?

43 × 47 = ? 88 × 82 = ? 74 × 76 = ?

大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?

我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;

很神气吧!

速算秘诀:(就以第一题为例好啦)

(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;

(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;

(3)3025!Bingo!其它依次类推就行了。

仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能

够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何

数都能算的。

六、关于9的数学速算技巧(两位数乘法)

关于9的口诀:

1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36

5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72

9 × 9 = 81

从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。

你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;

4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9

下面我们再做一些复杂一点的乘法:

18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?

54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?

关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。

这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?

我们先把上面这些数变一变。

18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;

45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;

72 = 7 × 10 + 2;81 = 8 × 10 + 1;

我们再把上面的数变一变

1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9

当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀

27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9

54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9

81 = 9 × 9

为了找到计算上面问题的方法,我们把上面的式子再变一次。

18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)

45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)

72 = 8×(10-1);81 = 9×(10-1)

现在我们来算上面的问题:

18 × 12 = 2×(10-1)× 12

= 2 ×(12 ×10 - 12)

= 2 ×(120- 12)

120 - 12 = 108;

这样就有了

18 × 12 = 2 × 108 = 216

是不是把一个两位数的乘法变成了一位数的乘法?

而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自

己会算了。

上面我们的计算好象很麻烦,其实现在总结一下就简单了。

看下一个题目:

27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)

= 3 × 108 = 324

36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)

= 4 × 108 = 432

发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108

45 × 12 = 5 × 108 = 540

54 × 12 = 6 × 108 = 648

63 × 12 = 7 × 108 = 756

72 × 12 = 8 × 108 = 864

81 × 12 = 9 × 108 = 972

我们再看看上面的计算结果,发现什么了吗?

我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的

数中一位数的那个乘数,都是正好比前面的乘数大1。

而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。

能不能找到一种更简便的计算方法呢?

为了找到一种更简便的算法。我在这里引入一个新的名词——补数。

什么是补数呢?

1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;

6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;

从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。

也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个

就行了。

现在我们再看看上面的计算结果:

拿一个 63 × 12 = 7 × 108 = 756 举例吧

结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1?

6 + 1 = 7

结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?

7 × 8 = 56

呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这

个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。

这样行吗?如果行的话,那可真是太快了,真的是速算了。

试一试其他的题:

18 × 12 =

第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数

拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16

结果就是 216。看一看上面对吗?

27 × 12 =

结果最前面的数——2 + 1 =3

结果最后面的数——3 ×8 = 24

结果 324

36 × 12 =

1、“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

2、“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

3、“截位法”,是指“在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果”的速算方式。

扩展资料:

注意事项

1、会笔算训练,现今我国的教育体制是应试教育,检验学生的标准是考试成绩单,那么学生的主要任务就是应试,答题,答题要用笔写,笔算训练是教学的主线。

2、算理拼玩。会用笔写题,不但要使孩子会算法,还要让孩子明白算理。 使孩子在拼玩中理解计算的算理,突破数的计算。孩子是在理解的基础上完成的计算。

3、速度训练,会用笔算题还远远不够,小学的口算要有时间限定,是否达标要用时间说话,也就是会算题还不够,主要还是要提速。

参考资料来源:百度百科-数学速算法



速算妙招,妙解数学难题



小学口算方法及技巧
一,口算技巧:1.加法类口算:凑整这类计算不管两个加数多少一定要先把一个加数凑成整,再将剩余的数加上去,保证结果的正确率2.减法类口算:减整补差这类计算时,将减数凑成整,运算后把补的部分加回来就是最后结果3.乘法类口算:巧记口诀,留意零例如:4x25、4x125、8x25、8x125等能够得到整...

加减法速算技巧
加法速算技巧如下:1、加大减差法 前面加数加上后面加数的整数,减去后面加数与整数的差等于和。例题:1376+98=1474 计算方法:1376+100-2 2、求数字位置颠倒两个两位数的和 一个数的十位数加上它的个位数乘以11等于和。例题:47+74=121 计算方法:(4+7)x11=121 减法速算技巧:1、减...

10以内的口算速算技巧
10以内口算速算技巧如下:1、加法 大数记心里,小数往上数,如4+2= 把4记在心里,往上数两个数,5、6,之后得出结果4+2=6。2、减法 大数记在心里,小数往下数,如6-3= 把6记在心里,往下数三个数,5、4、3, 之后得出结果6-3=3。

简便计算的窍门和技巧
5、背诵乘法口诀:背诵乘法口诀表可以在进行乘法运算时快速查找结果。6、规律性推算:在进行加、减、乘、除运算时,利用数学规律和计算技巧,可快速推算出大部分的结果。例如,在做乘法运算时,可根据余数为0或者应该进位来判断最终答案中0的个数;在做除法运算时,可根据数值间的关系快速判断商的大小等...

数学算术技巧
1、两个20以内数的乘法:两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。2、首同尾互补的乘法:口诀:头加1乘头作为头...

加减法口算速算技巧
方法四:加补法。如13-7还可以这样想:13-10+3=6。口算方法比较多,如何找出适合自己的最佳方法是提高口算速度及正确率的关键,练习时可以和学生一起复习多种口算方法,让学生通过比较,得出最佳的方法。减法心算:1、减凑整数再加上:比如52-7=45,这样算:把“7”变成“10-3”;那么,52-10+...

加减法心算技巧
加减法心算技巧如下:1、先易后难:算术是比较复杂的,而对孩子来说,如果一开始就让他们学习较难的算术,很难让他们接受。家长可以将生活融入到孩子的数学学习中。2、大数记心里,小数上下加减 加法:大数记心里,小数往上数,如4+2=把4记在心里,往上数两个数,5、6,之后得出结果4+2=6减法:...

简便计算的窍门和技巧
4. 贴近整十整百:加减运算中,如果其中一个数接近整十或整百,可以将该数调整至整十或整百,同时对另一个数做相应调整,以便简化计算。5. 背诵乘法口诀:熟悉乘法口诀表可以在乘法运算时迅速查找结果,提高计算速度。6. 规律性推算:利用数学规律和计算技巧,在进行加、减、乘、除运算时,可以快速...

口算小窍门
口算小窍门如下:1、掌握基本的计算技巧:要提高口算能力,首先要熟练掌握基本的加减乘除运算规则和技巧。熟练掌握逐位相加、进位借位等运算方法,对于口算计算的速度和准确性有很大帮助。2、分解和组合数字:对于大数计算,可以将数字进行分解或组合,使计算过程更简便。例如,对于加法,可以将大数拆分为十位...

心算技巧
一、加法心算技巧 1、分裂再凑整数:比如8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;2、变整数再减去:比如26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;3、错位数相加:个位加十位得数是个位的,如51+15=66,这样算:5+1得6;1+5得6;两6合拼...