古代著名的数学书

供稿:hz-xin.com     日期:2025-01-15
中国古代有关数学著名的书籍有哪些

《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》。
1、周髀算经
《周髀算经》原名《周髀》,是算经的十书之一。中国最古老的天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。 《周髀算经》在数学上的主要成就是介绍了勾股定理。
《周髀算经》的采用最简便可行的方法确定天文历法,揭示日月星辰的运行规律,囊括四季更替,气候变化,包涵南北有极,昼夜相推的道理。给后来者生活作息提供有力的保障,自此以后历代数学家无不以《周髀算经》为参考,在此基础上不断创新和发展。
2、九章算术
《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。
它是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。

3、海岛算经
《海岛算经》是中国学者编撰的最早一部测量数学著作,亦为地图学提供了数学基础。由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。
4、五曹算经
《五曹算经》是算经十书的一种,古代中国数学著作。一般认为由北周甄鸾所作,李淳风等为之作注。甄鸾通历法,曾编《天和历》,于566年颁行。“五曹”是指五类官员。
其中"田曹"所收的问题是各种田亩面积的计算,“兵曹”是关于军队配置、给养运输等的军事数学问题,“集曹”是贸易交换问题,“仓曹”是粮食税收和仓窖体积问题,“金曹”是丝织物交易等问题。全书共收67个问题,其数学内容没有超出《九章算术》的内容。其南宋刻本,收藏于北京大学图书馆。
5、孙子算经
《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。
参考资料:百度百科-周髀算经
参考资料:百度百科-九章算术
参考资料:百度百科-海岛算经
参考资料:百度百科-五曹算经
参考资料:百度百科-孙子算经

1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。
2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。

3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。
秦九韶所创造的正负开方术和大衍求一术长期以来影响着中国数学的研究方向。焦循、李锐、张敦仁、骆腾凤、时曰醇、黄宗宪等数学家的著述都是在《数书九章》的直接或间接影响下完成的。秦九韶的成就也代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。
4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。
其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内的数学知识纳入九章的框架。
5、《孙子算经》:《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。
卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
参考资料来源:百度百科-张丘建算经
参考资料来源:百度百科-四元玉鉴
参考资料来源:百度百科-数书九章
参考资料来源:百度百科-九章算术
参考资料来源:百度百科-孙子算经

1、《几何原本》(Elements of Euclid)
欧几里德(Euclid,前300-前275?)古希腊数学家.

书的印刷量仅次于《圣经》,是数学史上第一本成系统的著作,也是第一本译成中文的西文名著.原名《欧几里德几何学》,明朝徐光启译时改为《几何原本》.全
书13卷,从5条公设和5条公理出发,构造了几何的一种演绎体系,这种不假于实体世界,仅由一组公理实施逻辑推理而证明出定理的方法,是人类思想的一大进
步.此书从写作的时代一直流传至今,对人类活动起着持续的重大影响,直到19世纪非欧几里德几何出现以前,一直是几何推理、定理和方法的主要来源.
2、《算术研究》(Disquisitiones Arithmetical,1798)
高斯(C.F.Gauss,1774-1855),德国数学家.
“数
学之王”的称号可以说是对高斯极其恰当的赞辞.他与阿基米德、牛顿并列为历史上最伟大的数学家.他的名言“数学,科学的皇后;算术,数学的皇后”,贴切地
表达了他对于数学在科学中的关键作用的观点.他24岁时发表了这本书,这是数学史上最出色的成果之一,系统而广泛地阐述了数论里有影响的概念和方法.由此
推倒了18世界数学的理论和方法,以革新的数论开辟了通往19世纪中叶分析学的严格化道路.高斯立论极端谨慎,有3个原则:“少些;但要成熟
”:“不留下进一步要做的事情”.
3、《几何基础》(The Fuadations of Geometry,1854)
黎曼(B.Riemann,1826-1866),德国数学家.

曼是19世纪最有创造力的数学家之一.虽然他没有活到40岁,著作也不多,但几乎每篇文章都开创了一个新的领域.本篇是黎曼在格丁根大学任大学讲师时的就
职演讲,是数学史上最著名的演讲之一,题为“关于构成几何基础的假设”.在演讲中黎曼独立提出了非欧几里德几何,即“黎曼几何”,又称椭圆几何.他的这一
关于空间几何的独具胆识的思想,对近代理论物理学发生深远的影响,成为爱因斯坦相对论的几何基础.
4、《集合一般理论的基础》(Foundations of a General Theory of Aggregates,1883)
康托尔(G.Cantor,1845-1918),德国数学家.
康托尔创立的集合论,是19世纪最伟大的成就之一.本书是康托尔研究集合论的专著.他通过建立处理数学中无限的基本技巧而极大地推动了分析和逻辑的发展,凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新的思想模式.
5、《几何基础》(The Fuadations of Geometry,1899)
希耳伯特(D.Hilbert,1862-1943),德国数学家.

耳伯特是整个一代国际数学界的巨人.由高高斯、狄利克雷和黎曼于19世纪开创的生气勃勃的数学传统在20世纪的头30年中主要由于希耳伯特而更为显赫著
名.在本书中,希耳伯特用几何学的例子来阐述公理体系的集合理论的处理方法,它标志着几何学公理化处理的转折点.希耳伯特的名言:“我必须知道,我必将知
道”,总结了他献身数学并以毕生业务使之发展到新水平的激情.
6、《测度的一般理论和概率论》(General Theoey of Measure and Probability Theory,1929)
柯尔莫哥洛夫(A.N.Kolmogorov,1903-1993),苏联数学家.

尔莫哥洛夫是20世纪最有影响的苏联数学家.他对许多数学分支贡献了创造性的一般理论.此篇论文是研究概率的名作,在随后的50年中被人们作为概率论的完
全公理而接受.在1937年又出版《概率论的解析方法》一书,阐述了无后效的随机过程理论的原理,标志着概论论发展的一个新时期.
7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)
哥德尔(K.Godel,1906-1978),美籍奥地利数学家.

德尔在本篇中给出了著名的哥德尔证明,其内容是,要任何一个严格的数学系统中,必定有用本系统内的公理无法证明其成立或不成立的命题,因此,不能说算术的
基本公理不会出现矛盾.这个证明成了20世纪数学的标志,至今仍有影响和争论.它结束了近一个世纪来数学家们为建立能为全部数学提供严密基础公理的企图.
8、《数学原理》(Elements Mathematique I-XXXIX,1939-)

书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团.在本世纪30年代由法国的一群年轻数学家结合而成他们把
人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典著作,成为许多研究工作的出发
点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨著究竟何时算完,谁也说不清.但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无
二的.

《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书.十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》.
这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪).《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作.就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算.当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的



《周髀算经》(西汉)
《九章算术》(汉朝)
《缀术》(南朝祖冲之撰)

算经十书是指哪十部数学著作
仪礼》、《礼记》、《论语》、《左传》等儒家经典及其古注中与数字有关的地方详加注释。9、《数术记遗》以与刘洪问答的形式,介绍了14种计算方法,“未满百言,而骨削质奥,思纬淹通,依然东京风骨。”10、《缀术》是南北朝时期著名数学家祖冲之的著作。但这部书在唐宋之际公元十世纪前后失传了。

乘除法最早出现于我国的哪个朝代?
《周髀算经》原名《周髀》,是一部阐明盖天说和四分历法的古天文著作。由于天文历法要应用数学计算,因此书中有许多数学内容,如分数的乘除法、公分母的求法、勾股定理等。《九章算术》成书于公元一世纪下半叶,它是世界著名的数学著作之一,书中一共收集了246个数学问题和解法,并按问题的性质分为...

有哪些数学的书籍
《数学之书》是一本综合性的数学著作,它不仅仅关注数学的数学方面,还涉及到数学的历史、文化以及和其他学科的交叉应用。对于想要对数学有一个全面了解的读者来说,这本书是很好的选择。《微积分学教程》是一本关于微积分学的专业书籍。微积分是现代数学和物理学的基础,也是许多工程学科的重要工具。这...

中外古今数学名著及其作者
作者:(古希腊)欧几里得 原著, 燕晓东 编译 5 《数论报告》希尔伯特 6 《算术研究》高斯 7 《代数几何原理》哈里斯(Harris) 8. 《微积分学教程》菲赫金哥尔兹 9. 《有限群表示》J.P.塞尔 10. 《曲线和曲面的微分几何》杜卡谟 11. 《曲面论》达布 12. 《数论导引》华罗庚 13. 《代数学基础...

有哪些从基础到高级的数学书籍推荐?
从基础到高级的数学书籍涵盖了数学的多个领域,包括算术、代数、几何、概率论、统计学、微积分、线性代数、复变函数、实变函数、泛函分析等。以下是一些建议的书籍列表,按照学习顺序排列:算术和初等数学:《数学启蒙》(The Math Book)作者:Cindy Neuschwander 《数学之美》(The Joy of x)作者:...

中国古代数学的辉煌史
朱世杰在书中还给出了多元高次方程组的消元方法,以及用正负开方术求数值解的方法。三、李冶与《测圆海镜》李冶,金代著名数学家,他的代表作《测圆海镜》是中国现存的第一部天元术著作。全书一共十二卷,由一百七十个问题组成。书中对勾股容圆的问题进行了探讨,系统地建立了天元术(列一元方程的...

50分悬赏关于数学科学类著名书籍
1《从微分观点看拓扑》J.W.米尔诺 2 《自然哲学之数学原理》作者:伊萨克.牛顿 3 《几何原本》作者:(古希腊)欧几里得 4 《数论报告》希尔伯特 5 《算术研究》高斯 6 《代数几何原理》哈里斯(Harris)7.《有限群表示》J.P.塞尔 8.《数论导引》华罗庚 9.《代数学基础》贾柯伯逊 10.《交换代数...

经典的数学著作有什么?
经典数学著作《算数书》 《算经十书》 《九章算术》 《数书九章》 《测圆海镜》 《益古演段》 《详解九章算法》 《杨辉算法》 《算学启蒙》 《四元玉鉴》 《九章算法比类大全》 《算法统宗》 《数理精蕴》 《梅氏丛书辑要》 《视学》 《割圆密率捷法》 《畴人传》 《衡斋算学遗书合刻...

哪本书是有史以来最大的数学巨著?
事实上,布尔巴基并没有什么成文的组织章程,青年人只要具备有广博而扎实的数学素养,善于独立思考,都可以成为布尔巴基的正式成员。当然,他也必须经得起布尔巴基大会的特殊考验。布尔巴基大会每年举行两三次。在每次大会上,都要讨论《数学原本》的写作计划。会议大致确定出一卷书分多少章,每章写哪些...

宋代著名数学家秦九昭的著作什么提出了正负开方术和大衍求一术_百度知...
《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成。后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出...