已知直线l上有A,B,C,D四点,已知AB=24,CD=10,点M是AC中点,点N是BD中点,求MN的长
设A、B、C、D四点坐标为a,b,c,d
则
|a-b|=10;
|c-d|=4;
所以
a-b=10或-10
c-d=4或-4;
M,N坐标分别为m,n
则m=(a+c)/2;n=(b+d)/2;
MN=|m-n|=|a+c-b-d|/2
1>当a-b=10,c-d=4
MN=7
2>当a-b=-10,c-d=4
MN=3
3>当a-b=10,c-d=-4
MN=3
4>当a-b=-10,c-d=-4
MN=7
∵AB+CD=AC+BD=a+b,AC/2=MC.BD/2=ND.MC+ND=CD+MN=b+MN
∴(a+b)/2=(AC+BD)/2=MC+ND=MN+CD=MN+b.
∴MN=[(a+b)/2]-b=(a-b)/2.
AM=AC/2=(AB+BC)/2
ND=BD/2=(BC+CD)/2
AD=AM+MN+ND=AB+BC+CD
MN=AB+BC+CD-(AB+BC)/2-(BC+CD)/2=(AB+CD)/2=17
MN=17吧
我是假设BC=24,那么M点和B点是重合的 MN=1/2BD=17
MN=15或10
CAN YOU HELP ME?
c-d=18(m-n)。 上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r,则 a=18a1+r,b=18b1+r,c=18c1+r, 其中a1,b1,c1是整数。于是 a+b+c=18(a1+b1+c1)+3r。 因为18|(a+b+c),所以18|3r,即6|r,推知r=0,6,12。因为1000=55×...
如图,已知A、B、C、D是平面内四个点,请根据下列要求在所给图中作图...
解:画图如下:
已知平面上四点A、B、C、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB...
解:所画图形如下:
已知平面内的四个点A,B,C,D,过其中两个点画直线可以画___条._百度知...
(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,...
直线l上有A,B,C,D,E五点,则直线l上的射线有多少条
1. 在直线l上,以A、B、C、D、E五点中的任意一点为起点,可以向两个方向无限延伸形成射线。因此,从每个点出发都可以形成两条射线,总共就是5点乘以2条射线,得出直线l上有10条射线。2. 线段的形成需要直线上的两点确定一条线段。在直线l上的A、B、C、D、E五点中,任意选取两点可以构成一条...
在同一直线上有四点A.B.C.D已知AD=九分之五DB,AC=五分之九CB且CD=4c...
已知AD=5\/9DB;AC=9\/5CB;且CD=4cm BC=BD-CD;AC=(AD+CD) AC=(AD+CD)=9\/5CB=9\/5(BD-CD) 5\/9DB+CD=9\/5(BD-CD) (9\/5-5\/9)DB=(1+9\/5)CD=(1+9\/5)*4=14*4\/5 DB=14*4\/5\/(9\/5-5\/9)=14*4\/5\/(81-25)\/45=14*4*9\/56=9cm AD=5\/9DB=5\/9...
如图,A,B,C,D四个点在一条直线上,三角形ABF全等于三角形DCE,你能够...
AF‖DE ∵△ABF≌△DCE ∴∠EDA=∠DAF ∴AF‖DE
四点共面用向量怎么证明
四点共面用向量证明的步骤如下:1、我们要找到两个不共线的向量,然后通过这两个向量找到第三个向量,使得这三个向量共面。最后,我们证明第四个向量也在这个平面上。2、假设我们有四个点A、B、C和D。我们可以通过向量AB和向量AC找到向量BC。因为AB和AC是两个不共线的向量,所以它们可以作为平面的...
直线l上有A,B,C,D,E五点,则直线l上的射线有多少条
1.根据射线定义,以直线l上的a、b、c、d、e五点的任意一点为起点向任意一边延伸形成射线,那么就可以形成射线5*2=10条。2.根据线段定义,在直线l上的a、b、c、d、e五点中任意选两点可以构成线段,那么线段有条c5 2=25*4\/2=10条。
一条直线上有A、B、C、D、E,5各点,求有多少线段?多少射线?
在一条直线上有A、B、C、D、E五个点,如果这些点不重复,那么可以构成的线段数量是多少?我们可以通过累加的方式计算,从第一个点A到最后一个点E,可以依次构成4条线段,从第二个点B到最后一个点E,可以构成3条线段,以此类推,直到从第四个点D到最后一个点E,可以构成1条线段。因此,不重复...