请数学高手赐教:中国传统数学的特点是什么?答案越详细越好。谢谢!

供稿:hz-xin.com     日期:2025-01-15
中国传统数学的主要特征是什么?从哪些成就表现出来?

从三角形一个顶点向它的对边(或对边所在的直线)作垂线,那么这个顶点和垂足间的线段叫做三角形的高线,简称为高。
显然,三角形的高是一条线段。由于三角形有三条边,所以三角形有三条高。
从平行四边形一条边上任意一点向对边(或对边所在的直线)引一条垂线,这点到垂足之间的线段叫做平行四边形的高。
垂足所在的边叫做平行四边形的底。
由定义知,一个平行四边形可以有无数条高,但底却仅有四个!
<s!

数学是研究客观事物的空间形式与数量关系的科学。它不受任何时间和空间的限制,强烈地显现这一本质属性。然而,在古代各个时期不同的文化传统中,数学的表现形式往往也不尽相同,各自呈现出自己的特征。比如中国古典数学在表现形式、思维模式、与社会实际的关系、研究的中心以及发展的历程等许多方面与其他文化传统,特别是古希腊数学有较大的区别。

  首先是其表现形式,这里主要指数学经典的著作形式。古希腊数学常常采取抽象的公理化的形式,而中国古典数学则是以术文统率例题的形式。两种不同的形式,代表着迥然不同的两种风格。这两种形式和风格同样可以阐发数学理论的基础。有人往往忽略了这一点,把中国古代数学著作笼统地概括成应用问题集的形式。只要仔细分析、比较一下数学著作本身,就不难发现这个结论是极不正确的。比如最重要的著作《九章算术》,它的九章中,方田、粟米、少广、商功、盈不足、方程六章的全部及衰分、均输、勾股三章的部分,要么先列出一个或几个例题,然后给出十分抽象的“术”;要么先列出十分抽象的“术”,然后给出若干例题。这里的“术”都是些公式或抽象的计算程序;前者的例题只有题目及答案,后者的例题则包括题目、答案与“术”。所谓“术”就是阐述各种算法及具体应用,类似于后世的细草。《九章算术》中只有约五分之一的部分,即衰分、均输、勾股三章的约50个题目,可以说是应用问题集的形式。由此就得出《九章算术》是一部应用问题集的结论是不恰当的,正确的提法应是术文统率例题的形式。后来的《孙子算经》等的主体应该说是应用问题集的形式,但把一些预备知识放到了卷首。宋元数学高潮中的著作,贾宪《黄帝九章算经细草》的抽象性更高于《九章算术》,其它著作由于算法更为复杂,算法的抽象性有时达不到《九章》的程度,但是也作了可贵的努力,如《数书九章》的“大衍总数术”及其核心“大衍求一术”就是同余式解法的总术;“正负开方术”用抽象的文字阐述了开四次方的方法后,又声明“后篇效此”,说明也是普遍方法。朱世杰的两部著作都把大量预备知识、算法放在卷首,《四元玉鉴》的卷首还载有天元术、二元术、三元术、四元术的解法范例。《测圆海镜》更是把“圆城图式”及后面要用到的定义、命题列入卷一的“识别杂记”。因此,总的说来,算法(术)是解应用题的关键,“术”自然就成为中国古代数学的核心。中国数学著作是以算法为核心,算法统率例题的形式。中国传统文化

  其次是关于数学理论的研究。古希腊数学使用演绎推理,使数学知识形成了严谨的公理化体系。许多学者夸大了中国古算与古希腊数学的差别,认为中国古代数学成就只是经验的积累,没有推理,尤其是没有演绎推理。这是对中国古代数学缺乏起码了解的肤浅之见。遗憾的是,这种肤浅之见被某些科学泰斗所赞同而颇为流行,甚至成为论述现代科学没有在中国产生的出发点。诚然,中国古代数学与哲学结合得不像古希腊那么紧密,中国古代数学大家也不像古希腊数学大师那样大多是思想界的头面人物或思想流派的首领。一般说来,中国思想家对数学的兴趣远逊于古希腊的同仁,先秦诸子中即使数学修养最高的墨家,其数学成就也难望古希腊思想家的项背。同样,中国数学家,就整体而言,对数学理论研究的关注,也远不如古希腊数学家。比如,《九章算术》和许多数学著作对数学概念没有定义,许多数学问题的表述,并不严谨。这就要求读者必须站在作者的立场上,与作者共处于一个和谐的体系中,才能理解其内容,这或多或少也阻碍了数学理论的发展。硬说中国古代与古希腊同样重视数学理论研究,固然是不妥的。反之,说中国古代数学没有理论,没有推理,也是不符史实的。《周髀算经》记载,先秦数学家陈子在教诲荣方时,指出他之所以对某些数学原理不能理解,在于他“之于数未能通类”,他认为数学的“道术”,“言约而用博”,必须做到“能类以合类”。陈子大约处于《九章算术》编纂过程的初期。实际上,《九章》的编纂正是贯穿了“通类”、“类以合类”的思想。《九章算术》的作者把能用同一种数学方法解决的问题归于一类,提出共同的、抽象的“术”,如方田术、圆田术、今有术、衰分术、返衰术、少广术、开方术、盈不足术、均输术、方程术、勾股术等等,又将这些术及例题按其性质或应用分成方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九类。刘徽进一步挖掘《九章》许多方法的内在联系,又将衰分术、均输术、方程新术等归结到今有术。刘徽正是通过“事类相推”,找出了各种方法的归宿,发现数学知识是“枝条虽分而同本干”,并“发自一端”的一株大树,形成了自己完整的数学理论体系。贾宪总结开方法,创造开方作法本源。杨辉总结出勾股生变十三名图,李冶探讨了各种容圆关系,给出600多条公式,也都是通过归纳、类比做到通类,进而“类以合类”,进行数学的理论概括。


  通过“合类”,归纳出抽象的公式之后,将这些公式应用于解某些数学问题,实际上是从一般到特殊的演绎过程,这里要特别谈一下中国古代数学中有没有演绎推理的问题。大家知道,数学知识的获得,要通过类比、归纳、演绎各种推理途径,而证明一个数学命题的正确性,则必须依靠演绎推理。中国古代数学著作正是大量使用演绎推理。以中国古代最为发达的高次方程这一分支为例,刘徽、王孝通都提出了方程的推导过程,金元数学家更创造了设未知数列方程的天元术,李冶将用天元术列方程所需要的定理、公式大都在卷一的“识别杂记”中给出。刘徽、王孝通、秦九韶、李冶、朱世杰等推导高次方程的过程都是依靠演绎推理的,因而是正确的。至于刘徽用极限思想和无穷小分割对圆面积公式的证明,对锥体体积公式的证明;用出入相补原理对解勾股形诸公式的证明,对大量面积、体积公式的证明,对开方术的证明;利用齐同原理对方程术、盈不足术及许多算法的证明,都是演绎推理的典范。只要不带偏见,都会认识到刘徽在拓展数学知识时以归纳、类比为主,而在论证《九章算术》的公式、算法的正确性时,在批驳《九章算术》的某些错误时,则以演绎推理为主,从而把他自己掌握的数学知识建立在可靠的理论基础之上。

  说数学研究与思想界结合得不密切,是就整体而言的,并不是说每个数学家都如此,比如刘徽就例外。他深受魏晋辩难之风的影响,他对《九章算术》“析理以辞,解体用图”,“析理”正是辩难之风的要件,刘徽析理的原则、析理的方法都是与当时辩难之风合拍的。当然,即使是刘徽对许多数学概念的探讨还没达到古希腊那么深入的地步。比如,刘徽将无穷小分割引入数学证明是前无古人的贡献,却从未考虑过潜无穷小与实无穷小的区别。不过,这未必是坏事。古希腊数学家无法圆满解决潜无限与实无限的问题,不得不把无穷小概念排除在数学研究之外,因此,他们在证明数学命题时,从未使用过极限思想和无穷小分割。刘徽则不然,他认为圆内接正多边形边数无限增多,最后必定“与圆周合体”,因此可以对与圆周合体的正多边形进行无穷小分割并求其面积之和;他认为对阳马与鳖臑组成的堑堵进行无穷分割,可以达到“微则无形”的地步;刘徽在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。古希腊数学家认为正方形的对角线与其边长没有公度,即与1没有公度,导致数学史上的第一次危机,使古希腊数学转向,把计算排除在数学之外,只注重空间形式的研究,因而在无理数面前束手无策。而刘徽、祖冲之等则不然,他们对“开之不尽”的“不可开”的数,敢于继续开方,“求其微数”,以十进分数无限逼近无理根的近似值。没有陷入哲学的争论,从数学计算的实际出发,使中国数学家能够绕过曾导致希腊数学改变航向或裹足不前的暗礁,在数学理论和实践上达到古希腊数学家所不曾达到的高度。


  长于计算,以算法为中心,是中国古代数学的显著特点。古希腊数学只考虑数和形的性质,而不考虑具体数值。比如,他们很早就懂得,任何一个圆的周长与直径之比是个常数,但这个常数的数值,几百年无人问津,直到阿基米德才求出其值的范围。相反,中国古典数学几乎不研究离开数量关系的图形的性质,而通过切实可行的方法把实际问题化为一类数学模型,然后用一套程序化即机械化的算法求解。算经中的“术”全是计算公式与计算程序,或应用这些公式、程序的细草,所有的问题都要算出具体数值作为答案,即使几何问题,也要算出有关因素的长度、面积、体积。这就是几何方法与算法相结合,或几何问题的算法化。刘徽说:“以法相传,亦犹规矩、度量可得而共”(《九章算术注·序》),清楚地表达了中国古算形、数结合的特点。《九章算术》的开方术、方程术、盈不足术、衰分术、均输术,刘徽计算圆周率的割圆术、计算弧田面积近似值的方法,贾宪求贾宪三角各廉的增乘方法,贾宪开创而秦九韶使之完备的求高次方程正根的正负开方术,秦九韶的同余式解法,朱世杰的四元术,等等,都有相当复杂的计算程序。数学运算的程序化使复杂的计算问题易于掌握,即使不懂其数学原理,也可掌握其程序,于是产生了程序的辅助用表“立成”。上述这些程序都具有完全确定性、对一整类问题适用性及有效性等现代算法的三个特点。许多程序几乎可以一字不差地搬到现代电子计算机上实现。

  先进的记数制度,强烈的位置值制是促成中国算法理论充分发展的重要因素。中国最早发明了十进位置值制记数法,这种记数法十分有利于加减乘除四则运算及分数、小数的表示。加之汉语中数字都是单音节,便于编成口诀,促成筹算乘除捷算法向口诀的转化。而筹算的使用使分离系数表示法成为顺理成章。线性方程组的分离系数表示法、开方式的记法、天元多项式、四元式的记法,实际上也是一种位置值制。未知数的幂次完全由其在表达式中的位置决定,而不必写出未知数本身,如开方式中,自上而下依次是“商”、“实”(常数项)、“方”(一次项)、“一廉”、“二廉”(二、三次项系数)……隅(最高次项系数)。天元式也是如此,只是因为运算中有正幂也有负幂,才需要在常数项旁标一“太”字,或在一次项旁标一“元”字,未知数幂次完全由与“太”或“元”的相对位置决定。这种表示法特别便于开方或加减乘除运算,尤其是用天元的幂次乘(或除),只要上下移动“太”或“元”字的位置即可。

  数学理论密切联系实际,是中国古代数学的又一显著特征。不能把古算经的所有题目都看成日常生产生活的应用题,有些题目只是为了说明算法的例题,《九章算术》和《测圆海镜》中都有此类题目。但是,中国古算确实是以应用为目的的,这是与古希腊数学的显著区别之一。后者公开申明不以实际应用为目的,而是看成纯理念的精神活动,欧几里得几乎抹去了《几何原本》的实际来源的所有蛛丝马迹。而中国数学家却从不讳言研究数学的功利主义目的。自《汉书·律历志》到刘徽、秦九韶,都把数学的作用概括为“通神明”、“类万物”两个方面。这里神明的意义既可作神秘主义来理解,也可以看作说明物质世界的变化性质的范畴,或二者兼而有之。《九章算术》刘徽为其注没有任何神秘主义的成份,对通神明的作用也没作任何阐发,刘徽倒是明确指出了《九章算术》各章在实际生产生活中的应用范围:方田以御田畴界域,粟米以御交质变易,衰分以御贵贱禀税,少广以御积幂方圆,商功以御功程积实,均输以御远近劳费,盈不足以御隐杂互见,方程以御错糅正负,勾股以御高深广远,显然是“类万物”方面。秦九韶把“通神明”看作数学作用之大者,并且其理解是神秘主义与世界变化的性质二者兼而有之的,而把类万物、经世务看成数学作用之小者。尽管他表示要将数学“进之于道”,但他的数学研究实践使他感到对于大者仍“肤末于见”,而注重于小者,认识到“数术之传,以实为体”,因此“设为问答以拟于用”。他的《数书九章》除第一问外,大都是实际生活、生产及各种工程的应用题,反映南宋经济活动之翔实远胜于《九章算术》等著作对当时现实经济活动的反映。总之,中国数学密切联系实际,并在实际应用中得到发展。也许正因为有这个长处,中国数学从《九章算术》到宋元高潮,基本上坚持了唯物主义传统,未受到数字神秘主义的影响。明朝著作有一些神秘主义的东西,具有穿靴戴帽的性质,但仍不能改变以实际应用为目的这一总的特征。

  统治者对数学的态度造成了中国与希腊数学不同的发展特点。古希腊统治者非常重视数学,造成希腊数学有很强的连续性、继承性。而中国古代的统治者,除个别者外,大都不重视数学。秦始皇统一中国,较为重视数学的墨家遭到镇压,汉朝以后独尊儒术,儒法合流,读经学礼,崇尚文史,成为一种社会风气。由于数学对国计民生的重大作用,统治阶级又不得不承认“算术亦六艺要事”(《颜氏家训·杂艺》),但却主张“可以兼明,不可以专业”(同上)。数学一直被视为“九九贱技”。刘徽哀叹“当今好之者寡”,(《九章算术注·序》)秦九韶说“后世学者鄙之不讲”,(《数书九章序》)李冶以大儒研究数学,自谓“其悯我者当百数,其笑我者当千数”。(《测圆海镜序》)刘徽所处之魏晋,秦、李所处之宋元,都是中国数学兴盛时期,尚且如此,何论其他!二十四史,林林总总,列入无数帝王将相,以及文学家、思想家,甚至烈女节妇,却没有为一个数学家立传,祖冲之、李冶有传,却是以文学家、名臣的身份入传的。社会的需要,以及世代数学家不计悯笑,刻苦钻研,自汉迄元,使中国数学登上了世界数坛的一个又一个高峰,然而中国数学的发展常常大起大落,艰难地前进。更使人觉得奇怪的是,高潮往往出现在战乱时期,如战国时期《九章算术》主要成就的奠基,魏晋南北朝数学理论的建立,宋辽金元筹算数学的高潮;相反,低谷往往出现在大一统的太平盛世,如唐、明两代,不仅数学建树甚少,甚至到了大数学家看不懂前代成果的可笑地步!这当然丝毫不意味着战乱、分裂比安定、统一更有利于数学的发展,而是因为战乱时期,儒家思想的统治地位往往受到冲击,社会思潮较为活跃,思想比较解放。同时由于战乱,读经入仕的道路被堵,知识分子稍稍能按自己的兴趣和社会的需求发挥自己的才智,所蕴藏的数学才能也得到较充分展示,致使处于夹缝中的数学研究状况反而比大一统的太平盛世更好一些罢了。

中国数学的特点和对世界的影响中国数学的特点
(1)以算法为中心,属于应用数学 中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的
(2)具有较强的社会性 中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起 同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质
(3)寓理于算,理论高度概括 由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树 其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等
       中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统 在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方 而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展

我国传统数学具有的特点是:实用性;算法化;模型化;数形结合、直觉把握;寓理于算.

基于对数学本质特征的认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛、性,”「5」王粹坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。

综上所述,对数学本质特征的认识是发展的。变化的,用历史的、发展的观点来看待数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,当然,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点:,对数学教学具有重要的指导意义。

关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。

同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。

数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。但是,抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。

数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。当然,形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。

数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。

数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。

欧几里得的几何经典著作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论著都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。

但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。比如,前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。因此,后来又逐步建立了更严密的希尔伯特公理体系。

第三个特点是应用的广泛性。

我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。

而且,几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。当然,力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。

数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。比如,一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。

正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。比如,在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。

初一数学怎么补?
数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。一、数学的特点(一)数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,...

请问数学: 笼子里有若干只鸡和兔。从上面数,有35个头。从下面数,有94...
它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。实物演示法 利用身边的实物来...

我现在是高一的学生,数学考试的分数总是不尽人意,但我平时做题感觉都还...
浅谈数学学习方法 作为一名多年数学教育工作者,结合自己学生时代的一些心得,写在这里,和大家一起分享,希望对你有所帮助!文章主要分为四部分,第一部分是写给成绩不好的同学们;第二部分是学好数学的必要条件;第三部分是一些容易被忽略的学习方法,也是不能真正成为数学高手的原因;第四部分是关于考试和心态的。 写给成绩...

求数学高手,要有过程
观察这些题目都有特点:取两数中间等值 1、当x=3时\/x-1\/+\/x-5\/最小值=4 2、当x=0.5时\/x+2\/+\/x-3\/最小值=5 3、当x=2时\/x+1\/+\/x-2\/+\/x-4\/最小值=5 4、当x=4时式子最小值=12 5、当x=1005时式子最小值=1004+1003+.。。。+1+0+1+...+1004+1005=1005^2=...

数学公式是怎么来的?
中国数学简史主条杨辉三角目:中国数学史数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 Z4782477 2013-10-27 · TA获得超过118个赞 知道答主 回答量:19 ...

特殊平方数,数学高手来!智商情商都很高的进!!!
所有个位数为5的数的平方,百位数以上部分为其前面数字与该数加1的乘积,十位与个位为25。比如:225*225=(22*(22+1))*100+25=50625;25*25=(2*3)*100+25=625 3的平方数中,组成的数字只有1、0、8、9。0和9都只有一个,1和8的个数随着平方数的增加而增加,增加的个数总比3组成...

如何培养一个严谨的逻辑思维
所以打好基础,牢固掌握数学概念、公理、基本思路和解决问题的方法是学习数学最主要的特点。著名数学家华罗庚、陈景润就是初学阶段打下良好坚实的基础才步入数学宫殿的。 第二,要具备逻辑思维的严密性。数学是门严谨的学科,解决任何一个数学问题,无论是代数或是几何,证明题还是计算题,都要做到言必有据,因此解题时要...

数学基础很差,怎么办?
解答题虽然灵活多变,但所考查数学知识、方法、基本数学思想是不变的,题目形式的设置是相对稳定的,突出特点是稳定,继续强化双基,考查能力,突出主干,考查全面。 解答题的解法灵活多样,入口宽,得部分分易,得满分难,几乎每题都有梯度,层层设关卡,能较好地区分考生的能力层次。运算与推理互相渗透,推理证明与计算紧密结合...

如何成为数学高手
问题一:怎样成为数学高手? 第1计:挖掘潜能。不管你现在情况怎样,你都要相信自己还有巨大的潜能。从现在到中考进步50名的大有人在,进步80名的也有可能。.第2计:坚定意志。gao 考其实是看谁坚持到最后,谁就笑到最后。考生应全力以赴知难而进,战胜惰性提升意志.第3计:调好心态。心态决定成败...

华罗庚是陈景润的老师吗?
回忆在中科院工作的日子,陈景润如是说:我从一个学校图书资料室的狭小天地走出来,突然置身于全国名家高手云集的专门研究机构,眼界大开,如鱼得水。在数学所党委的直接领导下,在华罗庚教授的亲切指导和帮助下,我在这里充分领略了当时世界上最先进的数论研究成果,使我耳目一新。当时数学所多次举行数论...