声音经过中耳后其传音增压作用为多少倍
D
人可以辨别相当大范围的各种声音,例如,区分交响乐的复杂性、谈话的柔和程度等。听觉感受器是耳,由外耳、中耳和内耳三个部分组成,耳的适宜刺激是一定范围内的声波振动。声波通过外耳、中耳等传音装置到达耳蜗后引起淋巴液和基底膜的振动,使耳蜗的感音装置即科蒂器官中的毛细胞产生兴奋,将声波振动的机械能转变成为听神经纤维上的神经冲动。这些神经冲动以特定的频率和组合形式编码声音信息,传送到大脑皮层听觉中枢产生听觉。
一、耳的听阈和听域
(Auditory threshold and audible area)
人耳能够感受到的声波振动频率在16~20 000Hz之间。每种声波振动频率都有一种刚好能够引起听觉的最小振动强度,称为听阈(hearing threshold)。当振动强度在听阈以上继续增加时,听觉的感受也相应增强,当振动强度增加到某一限度时,引起的不仅仅是听觉,也会产生鼓膜的疼痛感觉,此限度称为最大可听阈。如果将每种频率本身具有的听阈和最大可听阈绘制成坐标图,就可以得到耳对声波振动频率和强度的感受范围,见图10-15。图中下方曲线表示不同频率振动的听阈,上方曲线表示最大可听阈,两者所包含的面积称为听域。正常人耳所能感受到的声波振动频率和强度值都应在听域的范围之内。其中最为敏感的频率范围是1 000~3 000Hz,日常语言的频率范围较此略低,语音的强度为中等强度,也在听阈和最大可听阈之间。
二、外耳和中耳的传音作用
(Sound transmission in the external or in the middle ears)
(一)耳廓和外耳道的集音作用和共鸣腔作用
外耳由耳廓和外耳道组成。来自前方和侧方的声音可以直接进入外耳道,而且耳廓的形状有利于声波能量的聚集,引起较强的鼓膜振动;来自后方的声音可以被耳廓遮挡,音感较弱。因此,稍稍转动头的位置,根据两耳声音强弱的轻微变化,可以判断声源的位置。
外耳道长约2.5cm,是声波传导的通路。作为一个共鸣腔,它的最佳共振频率大约在3 500Hz附近;当声音由外耳道传到鼓膜时,其强度可以增加约10倍。
(二)鼓膜和中耳听骨链的增压效应
中耳包括鼓膜、鼓室、听骨链、中耳小肌和咽鼓管等主要结构。鼓膜、听骨链和内耳卵圆窗之间的联系构成了声音从外耳传向耳蜗的有效通路(见图10-16)。到达外耳道的声波以空气为振动介质;经鼓膜和听骨链到达卵圆窗膜时,振动介质转变成为固体的生物组织。由于不同介质的声阻抗不同,理论上当振动在这些介质之间传递时,能量衰减极大,估计可达99%或者更多。从鼓膜到卵圆窗膜之间的传递系统具有特殊力学特性,振动经中耳传递时发生了增压效应,补偿了因为声阻抗不同造成的能量耗损。
鼓膜是一个圆锥形的膜性结构,圆锥的角度在人类约130°,面积约50~90mm2,厚度约0.1mm。呈顶点朝向中耳的漏斗型,空腔面朝下,而且面向外耳道。漏斗形的膜中央内侧与锤骨柄相连。鼓膜就像电话机受话器中的振膜,是一个压力承受装置,具有良好的频率响应和较小的失真度,可以将振动传递给位于漏斗尖顶处的锤骨柄。频率小于2 400Hz的声波振动作用于鼓膜时,可以通过鼓膜复制振动频率。在此期间,鼓膜的振动与声波振动的频率自始至终相同,很少残余振动。
听骨链的锤骨、砧骨及镫骨依次相连,锤骨柄附着在鼓膜的中心处,砧骨居中,将锤骨和镫骨连接起来,使三块听小骨形成一个两臂之间呈固定角度的杠杆。锤骨柄为长臂,砧骨长突为短臂,见图10-16。这样的杠杆系统支点刚好在整个听骨链的重心上,能量传递过程中惰性最小,效率最高。鼓膜振动引起锤骨柄内移时,砧骨长突和镫骨亦和锤骨柄作同方向的内移。
声波经鼓膜、听骨链到达卵圆窗膜时,其振动压强增大的现象称为中耳的增压效应。形成这种增压效应的主要原因之一是由于鼓膜的面积和卵圆窗的面积大小具有明显的差别。鼓膜的面积约55mm2,与卵圆窗膜相连的镫骨底板的面积约3.2mm2。假设听骨链传音时总压力不变,作用于卵圆窗膜上的压强增大约17.2倍(55?3.2)。原因之二是听骨链中锤骨柄较长,杠杆长臂和短臂之比约为1.3:1,在短臂端的压力将增加1.3倍。通过计算,整个中耳传音过程中的增压效应为22.4倍(17.2′1.3)。
中耳内的鼓膜张肌和镫骨肌的活动也与中耳传音功能有关。例如,当鼓膜张肌收缩时,可以使锤骨柄和鼓膜向内牵引,增加鼓膜紧张度;镫骨肌收缩时,使镫骨脚板向外后方移动。强烈的声响或气流经过外耳道,以及角膜和鼻黏膜受到机械刺激时,可以反射性地引起这两块小肌肉收缩,使鼓膜紧张,各听小骨之间的连接更为紧密,听骨链传递振幅减小,阻力增大,最终引起中耳的传音效能减弱。此项反射的生理学意义在于阻止较强的振动传到耳蜗,对感音装置具有一定的保护作用。由于声音引起中耳肌发生反射性收缩的潜伏期需要40~80ms,因此,遭遇突然发生的爆炸声刺激时,此反射对感音装置的保护作用不大。
(三)咽鼓管的功能
咽鼓管又称为耳咽管,连通鼓室和鼻咽部,鼓室内空气通过咽鼓管与大气相通,故咽鼓管可以平衡鼓室内空气和大气之间有可能出现的压力差,对于维持鼓膜的正常位置、形状和振动性能有着重要的意义。咽鼓管阻塞时,鼓室气体被吸收,鼓室内压力下降,引起鼓膜内陷。当鼓室内的压力仍然处于初始状态,而外耳道压力首先发生变化时,鼓膜内外形成明显的压力差。这种情况在飞机的突然升降或潜水时经常发生,如果不能通过咽鼓管使鼓室内压力和外耳道压力(或大气压力)取得平衡,就会在鼓膜两侧出现巨大的压力差。一旦这种压力差达到9.33~10.67kPa(70~80mmHg),将引起鼓膜剧烈疼痛;压力超过了24kPa(180mmHg)时,有可能造成鼓膜破裂。通过吞咽、打哈欠或喷嚏等动作可以使咽鼓管管口暂时开放,有利于气压的平衡。
三、耳蜗的感音换能作用
(Signal transmission in the cochlea)
耳蜗的生理功能是将传到耳蜗的机械振动能量转变成为听神经纤维的神经冲动。其中,一个关键的因素是耳蜗基底膜的振动刺激了基底膜表面的毛细胞,引起耳蜗内发生各种过渡性的电变化,最终导致毛细胞底部的传入神经纤维产生动作电位。
(一)耳蜗的结构
耳蜗是一条由骨质的管道围绕一个骨轴盘旋 ~ 周而形成。在耳蜗管的横断面上,可以见到斜行的前庭膜和横行的基底膜将管道分隔成为三个腔,分别称为前庭阶、鼓阶和蜗管(图10-17)。在耳蜗底部,前庭阶与卵圆窗膜相接,内充外淋巴,鼓阶与卵圆窗膜相接,也充满外淋巴。在耳蜗顶部,鼓阶与前庭阶中的外淋巴相交通。蜗管是一个盲管,充满内淋巴,基底膜上的螺旋器(又称科蒂器)浸浴在内淋巴中。螺旋器的构造十分复杂,蜗管的横断面上靠蜗轴一侧有一行纵向排列的内毛细胞;蜗管的靠外侧有3~5行纵向排列的外毛细胞。此外,还有其他的支持细胞和存在于这些细胞间的较大间隙,包括内、外隧道和Nuel间隙。这些间隙中的液体成分和外淋巴一致,与蜗管中的内淋巴不相交通,但可以通过基底膜上的小孔与鼓阶中的外淋巴相交通。这样的结构使得毛细胞的顶部接触到蜗管中的内淋巴,而毛细胞的周围和底部则接触到外淋巴。每一个毛细胞的顶部表面,有上百条排列整齐的听毛,其中较长的一些听毛埋植在盖膜的冻胶状物质之中,有些则仅与盖膜接触。盖膜的内侧连接耳蜗轴,外侧游离在内淋巴中。
(二)基底膜的振动和行波理论
基底膜全长约33mm,具有相同的直径和机械特性。有人将基底膜形容成一个声音频率的机械分析装置,说明它在耳蜗的感音换能功能形成中起着关键作用。当声波振动通过听骨链到达卵圆窗时,压力变化立即传给耳蜗内的淋巴液和膜性结构;如果卵圆窗膜内移,前庭膜和基底膜则下移,最终引起鼓阶的外淋巴液压迫圆窗膜外移;相反,当卵圆窗膜外移时,整个耳蜗内结构作反方向的移动,形成振动。观察表明,基底膜的振动是以行波(traveling wave)的方式进行的,即内淋巴振动首先引起靠近卵圆窗处的基底膜振动,其波动以行波的形式沿基底膜向耳蜗的顶部方向传播,就象人在抖动一条绸带时,行波沿绸带向远端传播一样。
耳蜗是如何分析不同频率的声音呢?不同频率的声波振动引起的行波通常是从基底膜的底部,即靠近卵圆窗膜处开始的。当声波的振动频率变化时,行波传播的距离和最大行波出现的部位有所不同。振动频率愈低,行波传播愈远,最大振幅行波出现的部位愈靠近基底膜顶部,当出现最大振幅后行波迅速消失,不再继续传播;相反,高频率声波引起的基底膜振动,仅仅局限于卵圆窗附近。
由于基底膜的某些物理性质,不同频率的声波振动常常可以引起不同形式的行波传播。基底膜的长度较耳蜗管短,顶部相对薄和松散,底部相对厚和紧绷,靠近卵圆窗处的宽度约0.04mm,以后逐渐加宽,基底膜上螺旋器的高度和重量,也随着基底膜的加宽而变大。因此,愈靠近耳蜗底部的基底膜,共振频率愈高,愈靠近顶部,共振频率愈低。使得低频振动引起的行波向顶部传播时阻力较小,而高频振动引起的行波仅仅局限在耳蜗底部附近。
耳蜗之所以能够区分不同振动频率的声波,是因为不同频率的声音可以引起不同形式的基底膜振动。动物实验和临床研究证实,耳蜗底部受损时主要影响高频听力;耳蜗顶部受损时主要影响低频听力。可以想象,每一种声波的振动频率在基底膜上都有一个特定的行波传播范围和最大振幅区域(图10-18),相应的毛细胞和听神经纤维会受到最大的刺激,将声波振动的机械能转变成为听神经纤维上不同组合形式的神经冲动,到达听觉中枢的不同部位,引起不同音调的听觉。
基底膜的振动如何使毛细胞受到刺激?如图10-17所示,毛细胞顶端的听毛有些埋在盖膜的胶状物中,有些和盖膜的下面相接触。由于盖膜、基底膜与蜗轴骨板的连接点不在同一水平,当行波引起基底膜振动时,基底膜的振动轴和盖膜的振动轴不一致,两种膜之间产生一个横向的交错移动,使听毛受到一个切向力的作用而弯曲,促使声波振动的机械能向生物电能转化过程的发生。
(三)耳蜗的生物电现象
当耳蜗未受刺激时,将一个电极放在鼓阶外淋巴液中,接地并保持零电位,另一个测量电极置于蜗管的内淋巴液中,可以记录到+80mV左右的电位差,也称为内淋巴电位(endolymphatic potential)或者耳蜗内电位(endocochlear potential)。由于存在内淋巴电位,测得的毛细胞顶端和周围部分的静息电位幅度不一样。例如,毛细胞顶端膜外为内淋巴,内淋巴电位为+80mV。倘若将上述测量电极的尖端刺入毛细胞膜内,设膜外电位为零时,毛细胞膜内电位为-70~-80mV,实际上毛细胞顶端膜内外的电位差应当是160mV。毛细胞的周围部分浸浴在外淋巴液中,膜内外的电位差只有80mV左右。实验证实,内淋巴中正电位的产生和维持,与蜗管外侧壁处的血管纹结构的细胞活动有直接关系,而且对缺氧十分敏感。由于血管纹细胞膜上存在具有ATP酶活性的"钠泵",可以分解ATP提供大量的能量,并将血浆中的K+泵入内淋巴液,将内淋巴液中的Na+泵入血浆,被转运的K+数量超过了Na+数量,使内淋巴液中含有大量的K+,因而保持了较高的正电位。缺氧时,ATP的生成和Na+泵的活动出现障碍,难以维持内淋巴液的正电位。
受到声音刺激时,耳蜗及其附近结构可以记录到一种具有交流性质的电变化,称为微音器电位(microphonic potential),见图10-19。微音器电位的特点是:在一定的范围内,微音器电位的频率和振幅与声波振动完全一致;潜伏期小于0.1ms;没有不应期;对缺氧和深麻醉相对不敏感;听神经纤维变性时仍然存在。耳蜗的功能如同对一个电话机的受话器或麦克风(即微音器)发声时,可以将声波振动转变成为波形类似的音频电信号一样。实验中,对着动物的耳廓讲话或者唱歌,将银球状电极电端与圆窗膜接触,记录到的生物电活动经过放大后,连接到一个扬声器,扬声器发出的声音与讲话或者唱歌的声音相同。说明,耳蜗起着类似微音器的作用,能够将声波振动转变成为相应的音频电信号。
用微电极进行细胞内记录时发现,微音器电位是声波振动刺激引起多个毛细胞感受器电位的复合;对于单个毛细胞的跨膜电位而言,听毛只要发生0.1°的角位移,就可以引起毛细胞出现感受器电位。动物实验证实,当内耳毛细胞顶部的听毛受到切向力作用产生不同的方向弯曲时,存在于顶部膜中的机械门控通道功能发生相应的改变。如果导致阳离子内流或内向电流的形成则引起细胞膜去极化;如果内向离子流停止并有外向离子流则引起细胞膜超极化。所以,膜电位变化的方向与听毛受力的方向有关,电位既可以是去极化式的,也可以是超极化式的,可以用来解释微音器电位的波动与声波振动的频率和幅度相一致的现象。内耳的螺旋器含有毛细胞和多种支持细胞。每个耳蜗大约有近16 000个毛细胞,由30 000条听神经的传入纤维所支配,经听神经将听觉信息传递到脑内。毛细胞又分为内毛细胞(inner hair cells)和外毛细胞(outer hair cells)。如图10-21所示,大约3 500个内毛细胞在近螺旋器的轴心处排列成单行,而大量的传入神经纤维的轴突末梢终止在内毛细胞;大约由12 000个外毛细胞在远离螺旋器的轴心处排列成三到四行,由少数小直径的传入纤维末梢所支配,但是大部分来自上橄榄复合体的传出纤维轴突末梢终止在外毛细胞处。一般认为,内毛细胞的作用是将不同频率的声波振动转变成为传入神经纤维的神经冲动,向中枢传递。而外毛细胞在受刺激时可以发生细胞体形的快速改变,膜的超极化反应可以使细胞延长,去极化反应可以使细胞缩短,该现象也与外来声音振动频率和振幅同步。很可能,这种细胞体形的改变可以增强基底膜的振动,对该处的行波起到放大作用,同时也可以提高局部内毛细胞对相应振动频率的敏感性。
四、听神经动作电位
(Action potential in auditory nerve)
图10-19所示的听神经动作电位N1、N2、N3 ××××××是一种复合动作电位。用不同频率的纯音刺激耳蜗,然后分析不同的单一听神经纤维的放电特性和声音频率之间的关系时发现,如果声波振动的强度足够大,同一神经纤维可以对一组相近频率的纯音刺激发生反应。如果逐渐减小声波振动的强度,其它的刺激频率因为强度太弱而无法产生反应时,仍然可以找到该纤维的一种最佳反应频率。每一条单一纤维的最佳频率的高低,决定于该纤维末梢在基底膜上的分布位置,这一部位正好是该频率声波引起最大振幅行波的所在位置。结果证实:当某一频率的声波强度较弱时,少数对该频率最敏感的神经纤维将神经冲动向中枢传递,如果增大该频率的声波振动强度,还能引起更多的相近最佳反应频率的神经纤维也发生兴奋,有更多的神经纤维参与到这一声音的信息传递中来,共同将此声音的频率和强度信息传递到听觉中枢。自然状态下,作用于人耳的声音振动频率和强度变化十分复杂,基底膜的振动形式和所引起的听神经纤维的兴奋及其组合也十分复杂。因此,人耳也具有区分不同音色的能力。
第四节 前庭器官
(Vestibular organ)
除了耳蜗以外,前庭器官也位于内耳迷路中,包括三个半规管(semicircular canals)、椭圆囊(utricle)和球囊(saccule)。三个半规管主要感受旋转或角变速运动的刺激;而椭圆囊和球囊则主要感受直线变速运动的刺激。因此,前庭器官是人体产生平衡感觉的感受器,主要感受自身运动状态和头部空间位置的变化。
一、前庭器官的感受装置和适宜刺激
(Vestibular apparatus and adequate stimulus)
前庭器官的感受细胞称为毛细胞。每个毛细胞的顶部有50~70条较短的小纤毛称为静毛(stereocilia),占据了细胞顶端的大部分;另外有一条大的纤毛叫动毛(kinocilium)。正如图10-21所示,当动毛和静毛均处于自然状态时,细胞膜内外静息电位约-80mV,与毛细胞相接触的神经纤维持续放电具有中等频率;此时,如果外力使毛细胞顶部的纤毛由静毛侧倒向动毛侧,细胞膜电位发生去极化达到-60mV的水平,神经纤维放电频率升高;当外力使纤毛由动毛侧倒向静毛侧时,细胞膜电位发生超极化,神经纤维放电频率降低。这是所有毛细胞感受外界刺激时的一般规律,其换能机制与耳蜗毛细胞类似。正常情况下,由于各种前庭器官毛细胞所在位置和附属结构的不同,使得不同形式的变速运动都能以特定的方式改变毛细胞纤毛的倒向,引起相应的神经纤维发放冲动的频率发生改变,将机体运动状态和头在空间位置的信息传送到中枢,引起特殊的运动和位置感觉,最终导致各种躯体和内脏功能发生反射性地改变。
三个半规管的形状大致相同,所处的三个平面相互垂直,分别称为前、后和外(水平)半规管。如果人在直立时头部向前倾斜30°,此时水平半规管所处的平面恰好与地面平行;前半规管向前和外展45°与地平面垂直;后半规管向后和外展45°与地平面垂直。每个半规管约占2/3个圆周,末端的相对膨大处称为壶腹(ampulla),半规管管腔和壶腹内充以内淋巴。壶腹内有壶脊,壶脊的位置与半规管的轴垂直;壶脊中有一排毛细胞,面对管腔,毛细胞顶部的纤毛埋植在一种胶质性的圆顶型终帽之中。当内淋巴从管腔向壶腹的方向移动时,使毛细胞中的静毛向动毛侧弯曲,引起相应的传入神经兴奋,将大量的神经冲动传递到中枢。
水平半规管主要感受人体以身体长轴为轴的所作的旋转变速运动。由于惯性作用,身体旋转时,管腔中内淋巴的起动较迟。因此,人体开始向左旋转时,左侧水平半规管中的内淋巴压力作用方向朝向壶腹,引起毛细胞兴奋产生较多的冲动;同时,右侧水平半规管中的内淋巴压力作用方向刚好相反,远离壶腹,此处的毛细胞产生的冲动减少。正是由于来自两侧水平半规管传入信号的不同,人脑才能判断身体是否开始和向什么方向旋转。旋转中期,管腔中的内淋巴与整个半规管的运动同步,两侧壶腹中的毛细胞都处于不受力的状态,中枢神经系统获得的信息与安静时相同。停止旋转时,管腔中内淋巴的运动停止较迟,两侧壶腹中毛细胞的受力方向与旋转开始时相反,因此,发放冲动的情况也相反。内耳迷路中的前、后两对半规管可以接受所处平面方向相一致的旋转变速运动的刺激。
椭圆囊和球囊主要感受人体作直线变速运动的刺激。其毛细胞位于囊斑中,毛细胞的纤毛埋植在称为耳石膜的胶质板内。椭圆囊与球囊有所不同,主要是囊斑所在的平面和人体的相对关系不一样。人体直立时,椭圆囊中囊斑处于水平位置,毛细胞顶部朝上,耳石膜在纤毛的上方,而球囊中的囊斑所处的平面与地面垂直,毛细胞和纤毛由囊斑表面向水平方向伸出,耳石膜悬在纤毛的外侧,与囊斑平行。两个囊斑的每一个毛细胞顶部的静毛和动毛的相对位置几乎都不相同(见图10-22),有利于分辨人体在囊斑平面上所作的各种方向的直线变速运动。
二、前庭反应和眼震颤
(Vestibular responses and nystagmus)
前庭器官传入的冲动,除了与运动和位置感觉的形成有关外,还可以引起各种姿势调节反射和植物性功能的改变。最典型的前庭反应是躯体作旋转运动时出现的眼球特殊运动,称为眼震颤(nystagmus)。眼震颤主要由半规管受刺激引起,可以用来检测前庭功能是否正常。刺激不同的半规管可以引起不同方向的眼震颤。当人体头部向前倾斜30°并且围绕人体垂直轴旋转时,主要是两侧的水平半规管壶嵴毛细胞受刺激,出现水平方向的眼震颤。具体情况是,当头部开始向一个方向旋转时,眼睛慢慢地朝向相反的方向移动直到不能再移动,然后迅速返回到眼裂正中。如图10-23所示,如果开始向左旋转,刺激了左侧壶嵴的毛细胞,两侧眼球缓慢向右侧移动,称为眼震颤的慢动相(slow phase);当慢动相使眼球移动到两眼裂右侧端不能再移动时,突然返回到眼裂正中,称为眼震颤的快动相(quick phase);随后再出现新的慢动相和快动相,周而复始。当旋转成为匀速转动时,两侧壶腹中的毛细胞不再受到新的刺激,眼震颤不再出现,眼球也居于眼裂的正中位置。当停止旋转出现减速时,内淋巴不能立刻停止移动,两侧壶腹中的毛细胞承受的压力不同,方向与旋转开始时的相反,因此引起相反方向的慢动相和快动相组成的眼震颤。临床上进行眼震颤实验时,眼球震颤的时间过长或过 短,说明前庭功能过敏或减弱。如果对前庭器官的刺激过强,或因前庭功能过敏时,常常会引起恶心、呕吐、眩晕、皮肤苍白等现象,称为前庭植物神经性反应,可以出现晕船、晕车或航空病等。
微信语音打和接的声音有区别吗
外耳由耳郭和外耳道组成。外耳道是声波传导的通路,耳郭的形状有利于收集声波,起采音作用,还可帮助判断声源的方向。中耳由鼓膜、听骨链、鼓室和咽鼓管等结构组成。主要功能是将空气中的声波振动能量高效地传递到内耳淋巴,鼓膜和听骨链在声音传递过程中起重要作用。正常情况下,声音通过空气传导与骨传导这两种途径传入...
人耳能听到的极限频率是多少?
人耳能听到的极限频率是20000Hz。对微小的声音,只要响度稍有增加人耳即可感觉到,但是当声音响度增大到某一值后,即使再有较大的增加,人耳的感觉却无明显变化。我们把人耳对声音响度的这种听觉特性称为“对数式”特性。可听声按倍频关系分为3份,确定低、中、高音频段。即:低音频段20Hz~160Hz(3...
内耳有什么功能?
平衡和听觉两个风牛马不相及的东西怎会凑在一起?在解剖学上,发现两者都浸泡在共通的内外淋巴液之中,因此在临床症状上就产生一些复杂的关系。平衡障碍可能会导致听觉症状,也就是可能会有听力障碍、耳鸣等症状。所以内耳兼有听觉和感受位置变动的双重功能 前庭平衡器可分成两个部分:一部分是左右耳...
耳鸣的问题
详情请查看视频回答
如何保养耳朵
人的两耳不仅衬托美化面部,而且有着非常重要的听觉和位觉(平衡)生理功能。耳是接受声音刺激的听觉器官,同时其内耳的前庭和半规管部分又属平衡器官。外耳(耳廓外听道)起集音作用,中耳(鼓膜听骨链的卵圆窗)起传音作用,内耳(耳蜗听神经末梢)有感音功能。耳的任何部位有病变,均可影响听觉功能。听觉功能对于人类认识社会...
人的听力范围大约从多少Hz 到多少 Hz?
人的听力范围大约16赫兹至20000赫兹。人耳能感受的声波频率范围是:16~20000赫,以1000~3000赫兹最为敏感。声波作用于听觉器官,使其感受细胞兴奋并引起听神经的冲动发放传入信息,经各级听觉中枢分析后引起的感觉。16至20000赫兹的空气振动是听觉的适宜刺激,这个范围的空气振动叫声波。比16赫兹低的次声,...
人类的内耳有哪些功能?
声波在兴奋毛细胞之前引起的听觉障碍,产生传音性耳蓖,如果只限于毛细胞感觉上皮障脚引起耳蜗性耳聋。若仅限于听神经本身病变,产生神经性耳聋。二者皆有时称感觉神经性耳聋。脑实质、神经元及神经纤维病损致中枢性聋。单纯大脑皮层机能紊乱引起功能性耳聋或称为精神性耳聋。(2)平衡功能 前庭系统对维持身体...
耳鸣是什么
详情请查看视频回答
耳蜗在听觉过程中的主要功能有哪些
耳蜗的主要功能有两个:\\x0d\\x0a第一、传音功能,即将前庭窗所接受的声音传送到毛细胞,镫骨内移时,蜗窗膜外突,导致前庭阶与鼓阶之间产生压力差,随之引起基地膜的震动。蜗底部的基底膜较硬,立即随着压力的变化而发生位移;耳蜗顶部的的基底膜较软,其位移跟不上压力的变化,基底膜上的震动从蜗底...
中耳的作用是什么?
耳包括外耳、中耳和内耳三部分。听觉感受器和位觉感受器位于内耳,因此耳又叫位听器。也有人将外耳和中耳列为位听器的附属器。外耳包括耳廓和外耳道两部分。另外,在外耳道的皮肤上生有耳毛和一些腺体,腺体的分泌物和耳毛对外界灰尘等异物的进入有一定的阻挡作用。中耳作用:1、阻抗匹配,可以使声...