中西方数学发展史上有什么不同的特点?

供稿:hz-xin.com     日期:2025-01-15
中国传统数学是世界数学发展长河的一支不容忽视的源头,与西方数学相比,它有哪些重要特点?

中国数学的特点和对世界的影响中国数学的特点
(1)以算法为中心,属于应用数学 中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的
(2)具有较强的社会性 中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起 同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质
(3)寓理于算,理论高度概括 由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树 其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等
       中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统 在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方 而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展

汉代数学成就除了《周髀算经》外,还有《九章算术》,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,但西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣。”可知该书中理论成于周公之时。
《九章算术》全书分作9章,一共搜集了246个数学问题,按解题的方法和应用的范围分为9大类,每一大类作为一章。它们的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积,求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题。
《九章算术》在数学上有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。《九章算术》是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着我国古代数学形成了完整的体系。唐宋两代,《九章算术》都由国家明令规定为教科书。到了北宋,《九章算术》还曾由政府进行过刊刻,这是世界上最早的印刷本数学书。

中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。

东方数学(以中国古代数学为代表)主要特征:1具有实用性,较强的社会性;2算法程序化;3. 寓理于算。
西方数学主要特征:1封闭的逻辑演绎体系;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义。
下面这部分转自吴文俊院士,我很同意他的观点,你不妨看看,希望对你有所帮助。
一提到科学或者数学,脑子里想到的就是以欧美为代表的西方科学和数学。我要讲的是,除了以西方为代表的科学和数学之外,事实上还有跟它们完全不同的所谓东方科学与数学。这个意见也不是我第一次这样讲,在《中国科学技术史》这一宏篇巨著里面就已经介绍了这一点。李约瑟在著作里讲,东方不仅有科学和数学,而且跟西方走的是完全不同的道路,有不同的思想方法。究竟怎么不一样呢?

所谓东方数学,就是中国的古代数学及印度的古代数学。东西方数学的异同,也就是现在欧美的数学跟东方数学(主要是古代的中国数学)有什么异同。我们学现代数学(也就是西方数学),主要内容是证明定理;而中国的古代数学根本不考虑定理不定理,没有这个概念,它的主要内容是解方程。我们着重解方程,解决各式各样的问题,着重计算,要把计算的过程、方法、步骤说出来。这个方法步骤,用现在的话来讲,就相当于所谓算法。美国一位计算机数学大师说,计算机数学即是算法的数学。中国的古代数学是一种算法的数学,也就是一种计算机的数学。进入到计算机时代,这种计算机数学或者是算法的数学,刚巧是符合时代要求,符合时代精神的。从这个意义上来讲,我们最古老的数学也是计算机时代最适合、最现代化的数学。这是我个人的一种看法。

我们再来说一下东方数学,也就是中国古代数学的精神实质是什么。我们古代数学的精髓就是从问题出发的精神,和西方的从公理出发完全不一样。为了从问题出发,解决各式各样的问题,就带动了理论和方法的发展。从问题出发,以问题带动学科的发展,这是整个数学发展的总的面貌。

为什么解决问题要解方程呢?原因很简单:一个问题有原始的数据,要求解决这个问题得出答案,这个答案也应是以某种数据的形式来表示的。在原始数据和要求数据之间,有某种形式的关系,这种由已知数和未知数建立起来的关系就是一种方程。为了解决形形色色的问题,就要解决形形色色的方程。因此,解方程变成中国两千多年历史发展中主要的目标所在。

我想特别提到一点,就是我们经常跟着外国人的脚步走。我们往往花很大的力气从事某种猜测的研究,希望能够解决或者至少推进一步。可是不管你对这个猜测证明也好,推进也好,提出这个猜测的人,就好比老师出了一个题目,即使你把这它解决了,也无非是把老师的题目做出来,还是低人一等,出题目的老师还是高你一等。在计算机时代,这个问题值得思考。当然,不管谁提出来这样的问题,我们都应想办法对其有所贡献,可是不能止步于此,我们应该出题目给人家做,这个性质是完全不一样的。

我们正在进入计算机时代,计算机只能处理有限的问题,所以相应的数学应该是一种处理有限事物的数学,在数学上叫“组合数学”。历史上,组合数学创始于中国,以贾宪为首,一系列的成就不断涌现。我们在数学方面得到许多这样的成就绝不是偶然的。东方的数学有一定的思考方法,是有计划、有步骤、有思想地进行的。具体地讲,它有一个基本的模式,就是从实际问题出发,形成一些新的概念,产生一些新的方法,再提高到理论上,建立一般的原理(就像牛顿有关的定理),用这样的原理解决形形色色更复杂、更重要、更艰深的实际问题,这样数学就不断地上升和发展。这就是古代数学发展的大致理论体系。

我们现在拥有计算机这样的便捷武器,又拥有切合计算机时代使用的古代数学。怎样进行工作,才能对得起古代的前辈,建立起我们新时代的新数学,并在不远的将来,使东方的数学超过西方的数学,不断地出题目给西方做,我想,这值得我们大家思考和需要努力的方面。 收起

数学的发展史是什么?
东西方文化对数学的理解各具特色,欧洲的几何学发展着重于空间和形式,而中国的算术则侧重于数量和运算。从最早的抽象概念——数字,到对时间(日、季、年)和抽象概念数量的理解,人类的数学思维不断拓展。总的来说,数学的发展史是一部不断抽象化、深化和扩展的主题曲,它不仅记录了人类对数的理解,...

数学发展史简介
3、发展时期:这一阶段,数学家们开始研究更复杂的数学问题,如方程、坐标、函数等。这一时期,中国古代数学进入了全盛时期,取得了举世瞩目的成果。4、繁荣时期:在这个阶段,数学研究领域进一步扩大,出现了许多著名的数学家和重要著作。此外,中西数学开始交流融合,西方数学的一些成果逐渐传入中国。5、...

萌芽时期数学的特点
近代数学时期 从17世纪到19世纪末,是西方资产阶级夺取政权、巩固政权以及资本主义的生产方式取得发展的时期,也是数学突破不断的近代数学时期,又称变量数学或高等数学时期。17世纪的数学有如下几个特点:在古希腊,几何学是数学的全部内容,代数除了以几何的面貌出现,也往往依赖几何方法解决和论证。直到17...

数学的由来是?
没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。2、从时间的角度:数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

古希腊与古罗马在科学技术的发展上各有何特点?
在其十三卷《几何原本》中所创立的数学方法(即在定义和公理基础上的抽象逻辑体系),不仅对几何学的研究和教学提供了蓝本,而且对整个自然科学的发展产生了巨大影响,是古希腊人对数学发展完全独创性的贡献。(4)、希波克拉底:建立了西方最早的医学学派,把疾病看作是一种服从自然法则的过程,强调用...

中国数学相比与西方数学为什么会处于劣势?
5. 然而,中西方在资源和经济结构上存在差异。地中海地区的多样化资源使得西方更早产生了交换和商业活动,这也促进了不同文明间的交流和数学知识传播。6. 与此相对,中国的黄河中下游地区拥有较为丰富的资源,自给自足的经济模式减少了交易的需求,这在一定程度上限制了数学的发展方向和文化交流的频繁。

数学的来源是什么?
西方数学简史:数学的演进大约可以看成是抽象化的持续发展,或是题材的延展,而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破,除了认知到如何去数...

东西方数学的区别
中国数学在历史上有过辉煌的成就。出现了著名的数学家。三国时代有刘徽,南北朝时代有祖冲之父子,唐初有王孝通,北宋有贾宪和沈括,宋元之际有秦九韶、杨辉、李冶和朱世杰等人。他们都在数学中不同领域内有所创造有所发明。我国古代的数学名著《九章算术》已闻名于全世界。与同时期的巴比仑后期数学相比,《...

数学的历史进程
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章...

极简西方数学史
从数学家的角度而言,18世纪是“英雄的时代”,各路豪杰尽显威名,包括科学史上著名的伯努利家族;几乎对每个数学分支都做出了重要贡献的欧拉;赋予微积分清楚严谨的基础的柯西;18世纪最顶级的数学家拉格朗日;此外还有泰勒,麦克劳林,斯特林,兰登,傅里叶,等等,他们为发展微积分做出了突出贡献。而蒙日,卡诺和彭塞列则创立了近...