简述数学历史
一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
九州时期 张掖 属雍州。
汉代(前206-220年)以前 月氏国称雄于敦煌祁连间,张掖为其属地
西周时期 戎、狄两族在这里居住
春秋战国时 乌孙与月氏共居河西。其后,月氏逐乌孙而独居。
秦汉之际 北方的匈奴族强大起来,击败并赶走了月氏人,河西遂为匈奴右贤王的领地。黑河东、西分别由休屠王、浑邪王分领。
西汉时期 武帝元狩二年(前121),骠骑将军霍去病进军河西,战败匈奴,浑邪、休屠二王率众归汉。张骞两次出使西域,“丝绸之路”开通。汉元鼎六年(前111年),取“张国臂掖,以通西域”之意,置张掖郡。此后,开始大规模徙民垦殖,戍兵屯田,发展农业生产,促进了中原与西域的经济、文化交通和繁荣。“立屯田于膏腴之野,列邮置于要害之路,驰命走驿,不绝于时月,商胡贩客,日款于塞下。”张掖遂为丝绸之路的重镇。西汉(前206-8年)末年,窦融任张掖属国督尉时,注重发展农牧业生产,使人民安居乐业。《后汉书》记载:“窦融据河西时,天下扰乱,唯河西独安。”“政亦宽和,上下相亲,晏然富殖。”“安定北地,上郡流入避饥荒者, 归之不绝。”
两晋南北朝时期 沮渠蒙逊在张掖建立北凉国,都建康(今高台县骆驼城),他采取发展农业,大兴儒学,扩大同西域各国的文化交流,继承发扬汉文化,推广佛教,翻译佛经,开凿石窟,并以当地音乐、歌舞与龟兹乐相结合,创造新的音乐《秦汉伎》等措施,使张掖文化呈现出空前繁荣的局面,成为北方中国佛教的中心,同时也使张掖成为中国内地与西域通使和商贸的中介。北魏(386-535年)时,《秦汉伎》传入中原,称《西凉乐》,成为北朝宫廷的“国伎”;张掖的佛教音乐传入中原,称《西凉州呗》,成为北朝佛寺的法乐。西魏废帝三年(554年),因境内之甘泉而改张掖为甘州。
唐时期 大力发展农业生产,“开置屯田,尽水陆之利,稻丰收稔,一缣数十斛,积军粮数十年”。河西的国际贸易地位达到前所未有的高峰,张掖成为中国对外贸易的重要场所。经济的繁荣,促进了文化昌盛。著名高僧玄奘去印度(天竺)取经,途径张掖。诗人陈子昂奉旨视察张掖,写有《上谏武后疏》。王维、高适、岑参、马云奇等驻足甘州时均留下著名诗篇。甘州音乐《波罗门佛曲》传入宫廷后,唐玄宗改制为《霓裳羽衣舞曲》。甘州边塞曲流入中原后,成为教坊大曲,以《甘州破》、《甘州子》、《八声甘州》、《甘州曲》等命名的词牌、曲牌流传甚广。唐末,张掖与中原、西域关系密切,通互市,发展贸易;僧侣往返,佛教文化得到进一步交流。
北宋时期 天圣六年(1028年),党项族首领李元昊击败甘州回鹘,建立西夏。继承汉文化传统继续兴修水利,发展农业,兴办教育,推崇佛教、道教,建成了规模宏大的佛教寺院-大佛寺。
元时期 置甘肃行省,张掖为省会。元世祖忽必烈亲诏郎中董文用垦甘州之土为水田,仿宁夏之法种水稻。城内建甘肃最大的粮仓-扎浑仓,供应各路军粮。甘州成为河西走廊的驿道中枢和茶叶外贸的转口城市,商路四通八达,商品交易频繁。意大利旅行家马可波罗前往上都途中,曾在甘州停留一年,在《马可 波罗游记》中记述了张掖的富庶、城市的规模以及宗教寺庙的宏伟。
明时期 张掖为陕西行都司及甘肃镇的治所。明王朝大力发展文化教育,建设了一批学校、书院,使甘州自此进士、举人、秀才辈出。从内地大量移民屯垦,大兴水利,使农业生产得到很大发展。在甘州大兴土木,修筑长城等一大批军事设施以巩固边防,形成了完整的军事防御体系,甘州仍然是西北军事补给基地,河西政治、军事和经济中心。商业持续繁荣,成为西北最大的畜产品集散市场,晋商及陕西、山东、京师商人集团云集甘州,建立会馆。明政府利用山西、陕西商人运粮、茶至甘州,充实边储和开展茶马交易。
清时期 张掖为甘州府治所,甘肃提督统军驻地,节制凉州、肃州、西宁、宁夏四镇总兵。清王朝在西部的历次军事行动,均以甘州为军事提调中心和后勤补给基地。这一时期,全国各地商人云集张掖(甘州),建立商帮会馆,如山西会馆、陕西会馆、直东(河北、山东)会馆、凉州会馆、镇蕃(民勤)会馆,两湖会馆、河南会馆。各大商团贸易活动辐射新疆、蒙古等西北广大地区,甘州成为河西商业中心和日用杂品的中转批发市场。清时,文化教育更加兴盛。城乡普设义学、社学、私塾;民间武学林立,百姓习武成风,在一百多年间出现了二十多名武进士和一百多名武举人。清末,张掖人王之佐留学日本时,加入孙中山领导的同盟会,回乡后宣传革命主张,他的《致马安良书》,公开支持武昌起义、拥护共和、废除帝制,风靡全省。
1927年 设张掖县。
1985年5月 撤销张掖县,设立县级张掖市以原张掖县行政区域为张掖市的行政区域。
2002年3月1日 国务院批复撤销张掖地区和县级张掖市,设立地级张掖市。市人民政府驻新设立的甘州区南环路。张掖市设立甘州区,以原县级张掖市的行政区域为甘州区的行政区域。区人民政府驻县府街。地级张掖市辖原张掖地区的临泽县、高台县、山丹县、民乐县、肃南裕固族自治县和新设立的甘州区。
1 (前3500-前500)数学起源与早期发展: 古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了。
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响。(其中贵族数学是说希腊贵族人研究数学,平民不接触)
怎么多字?! 100字以内可以有。
古代史
①古希腊曾有人写过《几何学史》,未能流传下来。
②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。
③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。
④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。
近代史
是从18世纪,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。
1、通史研究
代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。
2、古希腊史
许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。
3、古埃及史
把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。
4、断代史
德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家让·亚历山大·欧仁·迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参与数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”
5、数学家传
以及他们的全集与《选集》的整理和出版,这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。
6、数学杂志
最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。
7、外国著名数学家
古希腊:泰勒斯、欧几里得,阿基米德,毕达哥拉斯,
德国:高斯、黎曼、莱布尼兹、戴维·希尔伯特、歌德巴赫、克莱因、开普勒
法国:笛卡儿、柯西、拉格朗日、拉普拉斯、费马、泊松、嘉当、伽罗瓦、傅里叶
美国:阿尔福斯
英国:艾萨克·牛顿
瑞士:欧拉、丹尼尔·伯努利, ……
匈牙利:冯·诺依
苏联:什尼列尔曼、布赫夕太勃、巴尔巴恩,柯尔莫洛科夫
意大利:蕾西、
挪威:阿贝尔、
中国史
中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。
在中国古算书的序、跋中,经常出现数学史的内容。
如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。
以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。
利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。
从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。
数学的发展历史是怎么样的?
数学的发展历史是:1、第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。2、第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)...
数学的历史起源
关于数学的历史起源,论述如下:1、数学作为一门科学,其历史可以追溯到远古时代。早期的人类对数的概念有了一些模糊的认识,主要用于计数和测量。随着社会的发展,人们开始面临更加复杂的问题,对数学的需求也在不断增加。2、最早出现的数学系统可以追溯到古埃及和美索不达米亚地区的文明。古埃及人使用简单的...
数学的发展史是什么?
综上所述,数学的发展史是一部人类文明不断进步的历史。从史前时期的萌芽到现代的多元化发展,数学始终伴随着人类文明的脚步,不断为人类社会的进步贡献力量。
数学发展的历史介绍是什么?
第一个里程碑是解析几何的诞生。1637年法国数学家笛卡尔发明了坐标系,创立了解析几何,将变量引入数学,也把数字与图形结合了起来,为微积分的开创奠定的基础。第二里程碑是微积分的创立。英国科学史上最伟大的人物—牛顿,从物理的运动入手,通过引入无穷小量的概念,于1669年提出了微积分的概念,为近代...
数学的发展历史是什么样的?
数学的发展史大致可以分为四个时期。第一时期是数学形成时期,第二时期是常量数学时期等。其研究成果有李氏恒定式、华氏定理、苏氏锥面。第一时期,数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还...
数学的发展历史是什么?
数学的发展历史是:1、人类进入原始社会,就需要数学了,从早期的结绳记事到学会记数,再到简单的加减乘除,这些都是人类日常生活中所遇到的数学问题。数学是有等级的,就像自然数的运算是小学生的水平一样,超出了这个范围小学生就不能理解了。像有未知数的运算小学生就无从下手一样,数学的发生发展...
数学的起源与发展有怎样的历史?
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。2、从时间的角度:数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的...
中国的数学在历史上的进程是怎么样的?
中国数学发展史 中国古代数学在世界上享有领先地位,无论在算术、代数、几何还是三角学领域,都取得了显著的成就。以下是对中国初等数学发展历史的简要回顾。1. 算术方面的进展 约3000年前,中国已经掌握了自然数的四则运算,这些成果主要保存在古代文献和典籍中。乘除法则在《孙子算经》(公元三世纪)中...
数学发展历史是什么
数学发展史大致可以分为四个阶段:数学起源时期,初等数学时期,近代数学时期,现代数学时期。数学起源时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。初等数学时期:期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。该时期的基本成果,构成现在中学数学的主要内容。近代数学时期:...
数学的发展历史
数学的发展史大致可以分为四个时期。第一时期是数学形成时期,第二时期是常量数学时期,第三时期是变量数学时期,第四时期是现代数学时期。1、数学形成时期。这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,认识了最基本的几何形式,算术与几何尚未分开;2、常量数学时期。