转换器(A/D转换器)详细资料大全

供稿:hz-xin.com     日期:2025-01-08

将模拟信号转换成数位讯号的电路,称为模数转换器(简称a/d转换器或adc, *** og to digital converter),A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数位讯号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。

基本介绍

转换器分类,主要技术指标,DA转换器,一位DA转换器,

转换器分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。 转换器 1)积分型(如TLC7135) 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高解析度,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低解析度(12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Halfflash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705) Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高解析度。主要用于音频和测量。 5)电容阵列逐次比较型 电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单晶片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。 6)压频变换型(如AD650) 压频变换型(Voltage-FrequencyConverter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的解析度几乎可以无限增加,只要采样的时间能够满足输出频率解析度要求的累积脉冲个数的宽度。其优点是解析度高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。

主要技术指标

1)解析度(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的n次方的比值。解析度又称精度,通常以数位讯号的位数来表示。 2)转换速率(ConversionRate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(SampleRate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo/MillionSamplesperSecond)。 3)量化误差(QuantizingError)由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。 4)偏移误差(OffsetError)输入信号为零时输出信号不为零的值,可外接电位器调至最小。 5)满刻度误差(FullScaleError)满度输出时对应的输入信号与理想输入信号值之差。 6)线性度(Linearity)实际转换器的转移函式与理想直线的最大偏移,不包括以上三种误差。 其他指标还有:绝对精度(AbsoluteAuracy),相对精度(RelativeAuracy),微分非线性,单调性和无错码,总谐波失真(TotalHarmonicDistotortion缩写THD)和积分非线性。

DA转换器

DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器。此外,电压开关型电路为直接输出电压型DA转换器。 1)电压输出型(如TLC5620) 电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。 2)电流输出型(如THS5661A) 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOSDA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使回响变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 3)乘算型(如AD7533) DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数位化地衰减的衰减器及对输入信号进行调制的调制器使用。

一位DA转换器

一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。 4.DA转换器的主要技术指标: 1)分辩率(Resolution)指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。 2)建立时间(SettingTime)是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。一般地,电流输出DA建立时间较短,电压输出DA则较长。 其他指标还有线性度(Linearity),转换精度,温度系数/漂移。



A\/ D转换原理
一、A\/D转换器的工作原理:主要介绍以下三种方法:逐次逼近法、双积分法、电压频率转换法 1、逐次逼近法 逐次逼近式A\/D是比较常见的一种A\/D转换电路,转换的时间为微秒级。采用逐次逼近法的A\/D转换器是由一个比较器、D\/A转换器、缓冲寄存器及控制逻辑电路组成。基本原理是从高位到低位逐位试探比较...

模数A\/D、数模D\/A转换器知识
首先,让我们聚焦于A\/D转换器,或称为ADC。这个数字信号的入口,通过逐次逼近、积分型或并行比较等方法,将模拟信号精细地量化为数字世界。逐次逼近型以其高速转换速度著称,但高精度往往伴随着较高的成本;积分型分辨率惊人,但转换效率略显滞后;并行比较器则追求快速响应,但可能牺牲电路复杂度。特殊领域...

A\/D转换电路性能参数
电流型转换器转换速度快,通常在几纳秒至几百纳秒之间,而电压型转换器的速度则取决于运算放大器的响应时间。精度:衡量实际输出电压与理论值之间的差距,通常以数字信号的最低有效位为单位来衡量误差。线性度:数字量变化时,输出模拟信号是否按比例变化。理想情况下,D\/A转换器输出应是线性的,但实际...

声音的数字化过程:A D转换器的作用
A\/D转换器在这个过程中起着至关重要的作用。它的工作原理可以分为三个主要步骤:采样、量化和编码。采样是指将连续的模拟信号在时间上离散化。换句话说,采样是将模拟信号在某个特定的时间点上取一个值,这个值代表了该时间点上的信号强度。采样频率决定了数字化声音的质量,采样频率越高,声音的还原...

A\/D转换名词解释
A\/D转化电路,亦称“模拟数字转换器”,简称“模数转换器”。将模拟量或连续变化的量进行量化(离散化),转换为相应的数字量的电路。A\/D变换包含三个部分:抽样、量化和编码。一般情况下,量化和编码是同时完成的。 抽样是将模拟信号在时间上离散化的过程; 量化是将模拟信号在幅度上离散化的过程; ...

软件无线电系列——A\/D转换器原理与分类
本节目录 本节内容 一、A\/D转换器原理与分类 模数转换器的工作流程主要包括采样、保持、量化、编码和输出等环节。根据其变换原理,可以分为逐次比较式、子区式、双积分式、并行式和∑-∆AD转换器等。1、逐次比较式 逐次比较式A\/D转换器由高分辨率比较器、高速DAC、控制逻辑以及逐次比较寄存器...

目前应用较广的A D转换器如何分类?各有什么特点?
2)双积分式。双积分式是一种间接式A\/D转换器,优点是转换精度高,缺点是转换时间较长,一般要40~50ms,适用于转换速度不快的场合。典型芯片有MC14433和ICL7109。3) V\/F变换式。V\/F变换器是将模拟电压信号转换为频率信号,可替代A\/D转换。其特点是转换精度高,抗干扰性强,便于长矩离传送,价廉...

什么是A\/D转换器,它有哪些主要指标?简述其含义?
百度百科对A\/D转换的定义是:A\/D转换器是用来通过一定的电路将模拟量转变为数字量。主要指标:分辨率(Resolution)转换速率(Conversion Rate)量化误差 (Quantizing Error)偏移误差(Offset Error)满刻度误差(Full Scale Error)线性度(Linearity)百度百科介绍的已经很详细了,下附该词条百度百科网址https:\/\/...

什么是Sigma-DeltaADC
Sigma-DeltaADC是模拟数字转换器。模数转换器即A\/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准...

模拟电路设计(24)---几种不同类型的A\/D转换器的转换原理
双积分式A\/D转换器的转换原理 这种转换本质是一种V\/T(电压\/时间)的转换。它的一次转换基本工作原理可以分成三个工作阶段。第一阶段T1:模拟开关S1导通,其余各模拟开关断开,此阶段对输入电压积分采样。在进入此阶段之前,积分器的输出已被复零,所以当输入电压Vi为正时,积分器输出负向渐增;当输入...