偏导存在,微分,连续之间的关系

供稿:hz-xin.com     日期:2025-01-14
怎样理解多元函数,连续与偏导存在的关系,偏导连续之间的关系

多元函数连续不是偏导存在的充分条件也不是必要条件。
而偏导连续则是更强的条件,即偏导存在且连续可以推出多元函数连续,反之不可。
下面来分析,首先大家需要了解这些定义都是人定义出来的,可以反映多元函数的部分特征。所以,只要掌握了这些定义的意义就可以看出其背后的本质,才能判断定义间的相互关系。
多元函数在某点可偏导,可是可能在这点沿不同方向的极限不同,所以不一定连续。
而连续函数的偏导是不是一定存在,这个例子在一元函数里也很常见,比如x的绝对值,在x=0的时候没有导数。
偏导连续(是偏导连续哦!而不是偏导数存在+函数连续!是偏导数存在且偏导数连续),是可以推出可微的。
而可微是很强的结论,因为可以用十分特殊的线性函数来逼近的话,很多特殊的反例就不见了,而线性函数是连续的,这由定义可以看出来。
所以,偏导存在且连续可以推出函数连续,反之不能。
反例沿用之前的反例,函数连续,但偏导不存在。

扩展资料:
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。

人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。
但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。
参考资料:百度百科---多元函数

对于一元函数有,可微可导=>连续
对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的。

扩展资料:
可微的条件
1、必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
2、充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
连续的例子
1、所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。
2、绝对值函数也是连续的。
3、定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。
3、非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。
参考资料来源:百度百科-连续
参考资料来源:百度百科-可导
参考资料来源:百度百科-可微

偏导数连续是可微分充分条件,偏导数存在是可微分充分必要条件,偏导数存在,但函数不一定连续,反过来,成立,连续,则极限存在,反过来不成立。

 在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。


x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

y方向的偏导

同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。



纠正一下楼上的错误:

偏导存在是可微的必要不充分条件,可微一定偏导存在,但是偏导存在不一定可微;

偏导存在是连续的既不充分也不必要条件,它们两个谁也推不出谁。

可微是连续的充分不必要条件,可微一定连续,但是连续不一定可微。

这么说有点绕,直接看下图,简单明了。

概念关系



偏导数连续是可微分充分条件,偏导数存在是可微分充分必要条件,偏导数存在,但函数不一定连续,反过来,成立,连续,则极限存在,反过来不成立

可微分、连续与可导的关系
1,一元函数:可导必然连续,连续推不出可导,可导与可微等价。2,多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。3,多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有连续性则可推出可微。4,对于多元函数来说:某点处偏导数存在...

①说明一下极限,连续,导数,微分之间的关系。②解释一下dx,dy,dy\/dx在...
先回答第一个问题。极限值等于函数值则连续,连续不一定可导,可导一定连续。对于一元函数来说,可导就是可微。

可微分、连续与可导的关系?
三、总结关系 总的来说,连续性、可导性和可微分性之间存在着紧密的联系。一个函数在某个点或区间上可微分,则必然是可导的且连续;但反之不然,一个连续的函数不一定在所有点都可导。理解这些概念之间的关系对于学习微积分和理解函数的性质至关重要。特别是在解决数学分析和应用问题时,对这三个概念的...

高数。求多元函数的 可导、可微、连续三者互相之间的关系
1、可微推出偏导数存在且函数连续,反之不成立。2、偏导函数连续推出可微,反之不成立。3、可导一定连续,但连续不一定可导。

极限,和导数,还有微分,还有连续 到底是什么关系
极限确实有lim,这是极限的基础;导数是建立在极限的基础上,是符合固定关系条件下的极限。无穷小也是建立在极限的基础上,它也是固定关系条件下的极限。这个固定条件,对于导数和无穷小是不同的,这可以从二者的定义中看出来。

可微可导连续偏导存在极限存在之间的关系是什么
可微、可导、连续、偏导存在、极限存在之间的关系在微积分中非常重要。简要来说,这些概念之间存在一定的强弱关系:1. **可微与可导**:对于一元函数,可导与可微互为充分必要条件,即两者等价。若函数在某点可导,则必在该点可微;反之亦然。这意味着函数在该点处存在切线,且切线能很好地拟合原函数...

导函数连续,可微,一定可导么?
可导可微连续的关系如下:1、在一元函数的情况下,可导一定连续,即如果一个函数在某一点可导,那么它在该点也是连续的。这是因为可导性质要求函数在该点附近有一个唯一的切线,而切线的存在要求函数在该点连续。2、可微和可导在一元函数的情况下是等价的,即一个函数在某一点可微当且仅当它在该点可导...

数学中 导数、连续、微分之间有什么关系?
dx表示很小很小的x,要多小有多小。dy是当自变量增量为dx时,函数值的近似增量。所以dy=tanθdx,tanθ是点x切线斜率,而切线斜率是f'(x),所以f'(x)=dy\/dx,所以又叫微商。udu中u是关于自变量的函数,如果把u当作一个整体看成新的自变量,求udu,就相当于求xdx ...

偏导连续,导数连续,可微,可导,偏导存在,函数连续之间的排序问题。
4、n阶可微可以推出该多元函数对于多个自变量n阶混合偏导数的次序可交换 (如二元函数f(x,y),若df(x,y)存在,则df(x,y),(dxdy)=df(x,y)\/(dydx))5、连续与对任意自变量的偏导数存在没有充分或者必要的关系 至于导函数是否连续,与原函数是否可导是否连续无关,但是话说回来,既然“导函数...

二元函数:偏导数存在,有定义,存在极限,连续,可微。他们之间的推导关系...
多元函数这些性质之间的关系是:可微分是最强 的性质,即可微必然可以推出偏导数存在,必然可以推出连续。反之偏导数存在与连续之间是不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;偏导数都存在多元函数也可以不连续。偏导数连续强于函数可微分,是可微分的充分不必要条件,相关例子可以...