关于matlab的应用
MatLab的特点
1、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;
2、具有完备的图形处理功能,实现计算结果和编程的可视化;
3、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
4、 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
扩展资料:
MatLab将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
参考资料来源:百度百科—MATLAB
应用领域非常广泛,比如图像、优化、仿真等。特别是图像处理,很多文章都是基于matlab图像处理工具箱来做实验的。
了解了 MATLAB 的矩阵和向量概念与输入方法之后,MATLAB 的二维绘图再简单也不过了。假设有两个同长度的向量 x 和 y, 则用 plot(x,y) 就可以自动绘制画出二维图来。如果打开过图形窗口,则在最近打开的图形窗口上绘制此图,如果未打开窗口,则开一个新的窗口绘图。〖例〗正弦曲线绘制:
>> t=0:.1:2*pi; %生成横坐标向量,使其为 0,0.1,0.2,...,6.2
y=sin(t); % 计算正弦向量
plot(t,y) %绘制图形
这样立即可以得出如图所示的二维图 [4.1(a)]
plot() 函数还可以同时绘制出多条曲线,其调用格式和前面不完全一致,但也好理解。
>> y1=cos(t); plot(t,y,t,y1); %或 plot(t,[y; y1]), 即输出为两个行向量组成的矩阵。
图形见 4.1(b)。
plot() 函数最完整的调用格式为:
>> plot(x1,y1,选项1, x2,y2, 选项2, x3,y3, 选项3, ...)
其中所有的选项如表 4.1 所示。一些选项可以连用,如 '-r' 表示红色实线。
由 MATLAB 绘制的二维图形可以由下面的一些命令简单地修饰。如
>> grid % 加网格线
>> xlabel('字符串') % 给横坐标轴加说明
>> ylabel('字符串') % 给纵坐标轴加说明,
%并自动旋转90度
>> title('字符串') % 给整个图形加图题
得出的图形如右图所示。
axis() 函数可以手动地设置 x,y 坐标轴范围
还可以使用 plotyy() 函数绘制具有两个纵坐标刻度的图形。
坐标系的分割在 MATLAB 图形绘制中是很有特色的,比较规则的分割方式是用 subplot() 函数定义的,其标准调用格式为
subplot(n,m,k)
其中,n 和 m 为将图形窗口分成的行数和列数,而 k 为相对的编号。例如在标准的 Bode 图绘制中需要将窗口分为上下两个部分 (即n=2, m=1), 分割后上部编号为 1,下部编号为 2。
MATLAB 的图形对象简介 ( 00-12-13)
MATLAB 从 4.0 版本开始就提出了句柄图形学 (Handle Graphics) 的概念,为面向对象的图形处理提供了十分有用的工具。和早期版本的 MATLAB 相比较,其最大区别在于,它在图形绘制时其中每个图形元素
(比如其坐标轴或图形上的曲线、文字等) 都是一个独立的对象。用户可以对其中任何一个图形元素进行单独地修改,而不影响图形的其他部分,具有这样特点的图形称为向量化的绘图。这种向量化的绘图要求给每个图形元素分配一个句柄 (handle), 以后再对该图形元素做进一步操作时,则只需对该句柄进行操作即可。
MATLAB 5.0 版进一步加强了图形绘制的功能,而 5.3 版绘图又具有自己的新特色。例如它提供了新的图形编辑程序,并定义了一些新的三维绘图函数等。本章将主要介绍 MATLAB 5.3 版本的应用与特性,并介绍部分有关句柄图形学的内容。其余有关句柄图形学的问题,如窗口特性设置、图形界面设计等项内容将在第 6 章中讲述图形界面设计内容时详细介绍。MATLAB 6 也在图形显示,特别是三维图形显示与照相机参数设置等方面引入了新鲜的内容。
MATLAB 定义的各种图形对象及其关系如下图所示。
对象的通用属性如下表所示。
获取和改变对象的属性可以采用 get() 和 set() 函数对来实现。
>> set(句柄, 属性1,属性值1, 属性2,属性值2,...)
>> 属性值=get(句柄,属性)
坐标轴对象时 MATLAB 图形中常用的对象,坐标轴对象可以用 MATLAB 5.3 上的菜单项添加。添加之后,可以用鼠标改变其大小和形状,其他一些属性说明如下:
Box 属性: 表示是否需要坐标轴上的方框,选项可以为 'on' 和 'off', 默认的值为 'on'。本书中在后面介绍属性值时,将把默认的属性值列在前面。
ColorOrder 属性: 设置多条曲线的颜色顺序,应该为一个 n x 3 矩阵, 可以由 colormap() 函数来设置。
GridLineStyle 属性: 网格线类型,如实线、虚线等,其设置类似于 plot() 函数的选项,默认值为 ':',见前面的表格。
NextPlot 属性: 表示坐标轴图形的更新方式,'replace' 是默认的选项,表示重新绘制,而 'add' 选项表示在原来的图形上叠印,它相当于直接使用 hold on 命令的效果。
Title 属性: 本坐标轴标题的句柄。而其具体内容由 title() 函数设定,由此句柄就可以访问到原来的标题了。
XLabel 属性: x 轴标注的句柄,其内容由 xlabel() 函数设定。此外,类似地还有 YLabel 和 ZLabel 属性等。
XDir 属性: x 轴方向,可以选择 'normal' (正向) 和 'rev' (逆向), 此外 YDir 和 ZDir 属性也是类似的。
XGrid 属性: 表示 x 轴是否加网格线,可选值为 'off' 和 'on', 此外还类似地有 YGrid 和 ZGrid 选项。
XLim 属性: x 轴上下限,以向量 [xm,xM] 形式给出。此外,还有 YLim 和 ZLim 属性,前面介绍的 axis() 函数实际上是对这些属性的直接赋值。
XScale 属性: x 轴刻度类型设置,可以为 'linear' (线性的) 和 'log' (对数的)。此外还有 YScale 和 ZScale 属性。
XTick 和 XTickLabel 属性: XTick 属性将给出 x 轴上标尺点值的向量,而 XTickLabel 将存放这些标尺点上的标记字符串。对 y 和 z 轴也将有相应的标尺属性,如 ZTick 等。
MATLAB 图形上的文字修饰 ( 00-12-12)
字符对象及其属性
文字标注是图形修饰中的重要因素,它可以是用户在窗口上随意添加的字符说明,还可以是坐标轴对象中所用到的刻度标志等。字符对象的常用属性如下:
Color 属性: 字符的颜色。该属性的属性值是一个 1x3 颜色向量。
FontAngle 属性: 字体倾斜形式。如正常 'normal' 和斜体 'italic' 等。
FontName 属性: 字体的名称。如 'Times New Roman' 与 'Courier' 等。
FontSize 属性: 字号大小。默认以 pt 为单位,属性值应该为实数。
FontWeight 属性: 字体是否加黑。可以选择 'light'、'normal' (默认值)、'demi' 和 'bold' 4 个选项, 其颜色逐渐变黑。
HorizontalAlignment 属性: 表示文字的水平对齐方式。可以有 'left' (按左边对齐)、'center'
(居中对齐)、'right'(按右边对齐) 三种选择。类似地,对字符矩阵的位置 还有VerticalAlignment 属性。
FontUnits 属性: 字体大小的单位。如 'points' (磅数,即 pt) 为默认的值,此外, 还可以使用如下单位 'inches' (英寸)、'centimeters' (厘米)、'normalized' (归一值) 与 'pixels' (像素) 等。
Rotation 属性: 字体旋转角度。可以为任何数值。
Editing 属性: 是否允许交互式修改。选项可以为 'on' 和 'off'。
String 属性: 构成本字符对象的字符串。可以是字符串矩阵。
Interpreter 属性: 是否允许 TeX 格式。选项为 'tex' (允许 TeX 格式) 和 'none' (不允许) 两种,前者显示的效果好,而后者速度快。
Extent 属性: 字符串所在的位置范围,是只读型的,1x4 向量,前两个值表示字符串所在位置的左下角坐标,而后两个分量分别为字符对象的长和高。
MATLAB 字符串中可以直接使用的一些 TeX 命令见表 4-3。
〖例〗给出下面的MATLAB命令
>> t=['\partial(f_ip)/\partialt=-\Sigma_{i=1}^n\partial(f_ip)/',...
'\partialx_i + 0.5\Sigma_{i=1}^n\Sigma_{j=1}^n',...
'\partial^2(b_{ij}p)/\partialx_i\partialx_j'];
tt=str2mat(t,'Y(\omega)=\int_0^\infty y(t)e^{-j\omegat}dt');
[x,y]=ginput(1); text(x,y,tt);
则将得出如下图所示的结果。看见较复杂的数学公式也可以在 MATLAB 窗口中显示出来。
〖例〗分形理论是一个很有趣的领域,在这里我们给出一个简单的例子。任意选定一个二维平面上的初始点坐标 (x0, y0),假设我们可以生成一个在 [0,1] 区间上均匀分布的随机数 gi,那么根据其取值的大小,可以按下面的公式生成一个新的坐标点 (x1,y1):
从新坐标再根据随机数计算下一个点,如此类推。可以将上面的算法编写出下面的 MATLAB 函数
function [x,y]=frac_tree(x0,y0,v,N)
x=[x0; zeros(N-1,1)]; y=[y0; zeros(N-1,1)];
for i=2:N
vv=v(i);
if vv<0.05, y(i)=0.5*y(i-1);
elseif vv<0.45,
x(i)=0.42*(x(i-1)-y(i-1)); y(i)=0.2+0.42*(x(i-1)+y(i-1));
elseif vv<0.85,
x(i)=0.42*(x(i-1)+y(i-1)); y(i)=0.2-0.42*(x(i-1)-y(i-1));
else,
x(i)=0.1*x(i-1); y(i)=0.1*y(i-1)+0.2;
end
end
调用此函数,我们可以由下面的 MATLAB 命令生成 10,000 个这样的点,并将这些点 在 MATLAB 图形窗口中用点的形式表示出来,如图所示。
>> N=10000; v=rand(N,1);
[x,y]=frac_tree(0,0,v,N);
h=plot(x(1:10000),y(1:10000),'.'),
给出下面的命令可以设置绘图点的大小:
>> set(h,'MarkerSize',4)
对大的 N 值,计算量大,可以考虑采用MEX C格式改写 MATLAB 函数以加快速度。
MATLAB 其他二维图形绘制函数 ( 00-12-21)
除了标准的 plot() 函数外,MATLAB 还提供了一些其他函数,具体调用格式和意义请见下表
这里只给出几个例子:
彗星状轨迹绘制:考虑一个给定函数
f(x)=tan(sin(x))-sin(tan(x))
选定自变量~$x$ 的变化范围为 x 属于 [-p,p], 则可以由下面的函数绘制出不同模式的图形。
>> x=-pi:pi/200:pi;
y=tan(sin(x))-sin(tan(x)); comet(x,y);
极坐标曲线绘制:用 polar(r,t) 函数,其中 r 为幅值向量,t 为角度向量。
〖例〗绘制 r=cos(5q/4)+1/3; 其中 q 属于[0,8p], 绘制极坐标曲线。
〖解〗 MATLAB 命令
>> t=0:.1:8*pi; r=cos(5*t/4)+1/3;
polar(t,r)
利用下面的 MATLAB 提供的绘图命令可以绘制出各种各样的二维曲线。
>> x=-2:0.1:2; y=sin(x);
subplot(221);
feather(x,y); xlabel('(a) feather()')
subplot(222);
stairs(x,y); xlabel('(b) stairs()')
subplot(223);
stem(x,y); xlabel('(c) stem()')
subplot(224);
fill(x,y,'r'); xlabel('(d) fill()')
考察 MATLAB 的 Gauss 伪随机数发生函数 randn() 的分布效果,首先生成 30,000 个 Gauss 伪随机数,然后由 hist() 函数绘制出该伪随机数的分布函数,并和概率密度的理论值
相比较。 这一分析的 MATLAB 语句如下
>> y=randn(1,30000); xx=-3.8:0.4:3.8;
zz=hist(y,xx); zz=zz/(30000*0.4);
x1=-3.8:0.1:3.8;
y1=1/sqrt(2*pi)*exp(-x1.^2/2);
bar(xx,zz),
hold on, plot(x1,y1); hold off
半对数与全对数坐标系: 可以使用 semilogx(), semilogy() 和 loglog()。
>> theta=0:0.1:6*pi; r=cos(theta/3)+1/9;
subplot(2,2,1), polar(theta, r);
subplot(2,2,2); plot(theta, r);
subplot(2,2,3); semilogx(theta, r); grid
subplot(2,2,4); semilogy(theta, r), grid
MATLAB 语言的三维曲线绘制( 00-12-27)
三维曲线绘制
类似于二维曲线,三维曲线的标准绘制函数为 plot3()。例如,x=cos(t), y=sin(t) 和 z=t 的数学关系可以由下面语句绘制出来:
>> t=0: pi/50: 2*pi;
x=sin(t); y=cos(t); z=t;
h=plot3(x, y, z, 'g-')
set(h,'LineWidth',4*get(h,'LineWidth'))
三维网格图
可以由 mesh() 函数绘制,其调用方法是 mesh(x,y,z), 其中 x, y, z 是网格上的三坐标矩阵。一般情况下,x 和 y 由 meshgrid() 函数生成。
〖例4-17〗考虑下面给出的二元函数,在 x, y 平面内选择一个区域,然后绘制出
的三维表面图形。
首先可以调用 meshgrid() 函数生成 x 和 y 平面的网格表示。该函数的调用意义十分明显,即可以产生一个横坐标起始于-3, 中止于 3, 步距为 0.1; 纵坐标起始于-2, 中止于2, 步距 为 0.1 的网格分割。然后由公式计算出曲面的 z 矩阵。最后调用 mesh() 函数 绘制曲面的三维表面网格图形。
>> [x,y] = meshgrid(-3:0.1:3,-2:0.1:2);
z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);
mesh(x,y,z)
三维表面图
同样的数据在 surf() 函数下能得出如下所示的表面图 (a)。在绘图后再给出 colorbar 目录,则将得出如 (b) 图所示的带有高度指示的三维表面图。
三维对象的设置
surf() 和 mesh() 函数绘制出来的三维图实际上是一个 MATLAB 图形对象,它有各种各样的属性,例如,其 MeshStyle 属性表示其网格的类型,既可以设置成水平的,又可以设置成垂直的。下面的语句将得出下图的网格效果:
>> [x,y] = meshgrid(-3:0.1:3,-2:0.1:2); z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);
h=surf(x,y,z), axis([-3 3 -2 2 -0.7 1.5]); set(h,'MeshStyle','row');
figure; h1=surf(x,y,z), axis([-3 3 -2 2 -0.7 1.5]); set(h1,'MeshStyle','column');
三维图表面着色插值的修饰
MATLAB 在三维图绘制时,表面着色采用了各种各样的插值方法,其中 shading flat 和 shading interp 两个命令将方便得出如下的图形。前者将各个表面块用同样的颜色表示,而后者对表面块的着色也进行了插值处理,使其表面显得更光滑。
MATLAB 图形的可视编辑
从 MATLAB 5.3 版开始,就提供了图形编辑的方便功能。在标准的MATLAB图形窗口中有一个“图形编辑工具条”,其中提供了各种工具,允许用户自由地在图形上添加文字,箭头、曲线等,还允许用户任意地进行三维图的视角变换。除了工具条上的工具外,还允许用户自如地在图形窗口上添加、调整坐标系或进行一些标注文字的修饰。典型窗口及编辑工具条如下所示。
如果想修改某个曲线的特征,则可以在编辑状态下(即按下工具条中左边的箭头按钮),首先单击想改动的对象来选择它,然后右击鼠标键,得出相应的快捷菜单,从中选择相应的菜单项,从得出的对话框中对选中对象的属性进行修改。
对三维图形对象,还可以用工具条中最右边的按钮来控制三维图的旋转。
©2000 版权所有 转载请注明出处并加上本站链接
(本站版面设计参考了CTeX网站的主页,并得到网站版主aloft与eggs的极大帮助,特此致谢)
主页维护: 薛定宇 自2000年11月3日访问量 (“炎黄在线”计数器)
我觉得你问的是一个算法的问题,只是matlab适合编写实验性研究型的程序比较方便。这个问题应该属于模式识别领域,见:
http://en.wikipedia.org/wiki/Pattern_Recognition
就是说每一个特征向量(即几个特征的值)对应一种故障类型,已经知道了很多特征向量和故障类型的对应(就是很多个样本),现在有一个新的特征向量,但对应的故障类型未知,希望有一种算法能根据以往的对应关系推测出这个未知的故障类型。
方法有很多,比如线性判别函数、神经网络、近邻法、决策树、SVM等等,用哪一种关键看场合。要知道你的问题才行。matlab里不一定有现成的函数。可以看下这本书:
http://www.yuedu.org/books/book-200510111209150b.htm
但是我没有qq
MATLAB
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.在新的版本中也加入了对C,FORTRAN,c++,JAVA的支持.可以直接调用.
MATLAB的基础是矩阵计算,但是由于他的开放性,并且mathwork也吸收了想maple等软件的优点,使MATLAB成为一个强大的数学软件
当前流行的MATLAB 6.5/7.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包.
我觉得你问的是一个算法的问题,只是matlab适合编写实验性研究型的程序比较方便。这个问题应该属于模式识别领域,见:
http://en.wikipedia.org/wiki/Pattern_Recognition
就是说每一个特征向量(即几个特征的值)对应一种故障类型,已经知道了很多特征向量和故障类型的对应(就是很多个样本),现在有一个新的特征向量,但对应的故障类型未知,希望有一种算法能根据以往的对应关系推测出这个未知的故障类型。
方法有很多,比如线性判别函数、神经网络、近邻法、决策树、SVM等等,用哪一种关键看场合。要知道你的问题才行。matlab里不一定有现成的函数。可以看下这本书:
http://www.yuedu.org/books/book-200510111209150b.htm
这是一个很典型的模式识别的应用问题,特征值组成的向量(特征向量)可看成空间中的一点,如果特征值的个数n大于3,则是一个n维空间。利用已知的特征值和故障的对应关系可将这个n维空间划分为几个区域,分别是无故障区域和各种故障的区域。问题就转变成了求各分界面的问题,有了分界面就能对故障情况未知的特征值进行判断了。Matlab最适合解决这类涉及矩阵和向量的问题,具体的算法建议还是看一看模式识别方面的书,我的推荐是Richard O. Duda等人所著的Pattern Classification。
我觉得你问的是一个算法的问题,只是matlab适合编写实验性研究型的程序比较方便。这个问题应该属于模式识别领域,见:
http://en.wikipedia.org/wiki/Pattern_Recognition
就是说每一个特征向量(即几个特征的值)对应一种故障类型,已经知道了很多特征向量和故障类型的对应(就是很多个样本),现在有一个新的特征向量,但对应的故障类型未知,希望有一种算法能根据以往的对应关系推测出这个未知的故障类型。
方法有很多,比如线性判别函数、神经网络、近邻法、决策树、SVM等等,用哪一种关键看场合。要知道你的问题才行。matlab里不一定有现成的函数。可以看下这本书:
http://www.yuedu.org/books/book-200510111209150b.htm
MATLAB 在电子信息行业的具体应用有哪些?哪些企业会用到这个软件?_百 ...
在电子信息行业中,MATLAB是一款广泛使用的计算软件,它主要用于实现矩阵运算,并且其语法结构相对C++更为宽泛。根据我个人的理解,尤其是在电气学科领域,MATLAB具有两个主要的价值。第一个价值在于编程。由于MATLAB编程的简易性,我们能够用它解决大量的工程计算问题,包括但不限于数字信号处理的分析计算和一...
matlab有什么用
MATLAB是一种用于数学和工程应用的编程语言和环境,广泛应用于数据分析、算法开发、模型仿真等多个领域。其主要用途包括:一、数据处理与可视化 MATLAB在数据处理方面表现出色,能够进行大规模数据的计算、分析和处理。其内置函数可以方便地进行各种数学运算,如矩阵运算、统计分析等。此外,MATLAB还具有强大的可...
matlab软件在哪些行业有应用
MATLAB的应用领域十分广阔,典型的应用举例如下:(1) 数据分析;(2) 数值与符号计算;(3) 工程与科学绘图;(4) 控制系统设计;(5) 航天工业;(6) 汽车工业;(7) 生物医学工程;(8) 语音处理;(9) 图像与数字信号处理;(10) 财务、金融分析;(11) 建模、仿真及样机开发;(12) 新算法研究开...
matlab的应用领域
MATLAB 适用于在以下领域:1、数值分析 2、数值和符号计算 3、工程与科学绘图 4、控制系统的设计与仿真 5、数字图像处理技术 6、数字信号处理技术 7、通讯系统设计与仿真 8、财务与金融工程 9、管理与调度优化计算(运筹学)
matlab是用来做什么的
MATLAB是一种高级科学计算和编程语言,广泛应用于数学、工程和科学领域。它具备多种功能,能够满足各种复杂的数据处理和算法开发需求。在数值计算和数据分析方面,MATLAB提供了丰富的工具,包括线性代数、统计分析、优化、插值和拟合等。这些功能使得它能够处理大规模的数值计算,并能处理各种类型的数据,适用于...
MATLAB软件的应用
基本应用MATLAB 产品族可以用来进行以下各种工作:●数值分析 ●数值和符号计算 ●工程与科学绘图 ●控制系统的设计与仿真 ●数字图像处理技术 ●数字信号处理技术 ●通讯系统设计与仿真 MATLAB在通讯系统设计与仿真的应用 ●财务与金融工程 ●管理与调度优化计算(运筹学)MATLAB 的应用范围非常广,包括信号...
matlab在电气工程中的应用
以下是几个MATLAB在电气工程中的应用示例:1、控制系统设计与分析:MATLAB提供了丰富的控制工具箱,可以进行控制系统建模、分析和设计。2、电力电子系统建模与仿真:电力电子技术在电气工程中占据重要地位,包括电机控制、可再生能源转换等。3、信号处理与通信系统设计:电气工程中涉及大量的信号处理和通信系统...
matlab在汽车设计上的应用
MATLAB在汽车设计中的应用非常广泛。在确定汽车动力性能时,可以利用MATLAB绘制骑行动力与行驶阻力的平衡图,计算最高车速及其对应的附着率,甚至计算在特定档位下的加速时间。这些复杂问题借助MATLAB的计算和绘图功能,可以迅速得出结论。在操纵稳定性方面,利用MATLAB的数据分析功能可以解决汽车制动性能问题,如...
matlab在金融工程中的应用
matlab在金融工程中的应用:matlab可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测。matlab在金融财经方面的应用,可以用固定收益模型进行计算,例如定价、收益和现金流动等有价证券的固定收益计算。金融...
matlab数学建模一般应用到什么领域
1、在数学模型的建立阶段,可以用simulink等工具进行模拟建模,非常好用;simulink中可以利用matlab中所有的模块进行搭建所需要的模型,模块功能涉及几乎理工科的任何领域,功能非常强大.2、在数学模型的建立阶段也可以使用GUI,进行用户界面系统的建立,这个系统类似于visual C的样子,让用户根据自己的需要定义功能,...