测定方法
测定年代的方法,一般可分为两类,即绝对年代测定法和相对年代测定法。
(1)绝对年代测定法
绝对年代的测定,是根据沉积或火山岩在形成后其中化学元素自然放射性的衰变而计算的。沉积岩中的某些元素含有不稳定的同位素,在发生自然的放射性衰变时,它们的原子有规则地分解成为其他的元素,如钾40逐渐衰变成氩40,铀235衰变成铅207,碳14衰变成氮14等等。
衰变的速度不受外界因素如压力、温度或时间推移的影响。经过一定的时间,原先的原子只留下一半了。这个时间叫“半衰期”,放射的量也只有一半了。这留下的一半经过一定的时间,又去掉一半,只留下原先的1/4,再过一定的时间,再去掉一半,留下原先的1/8,如此等等。如果确定这块岩石样品中剩余的不稳定的同位素的量,再确定衰变产生的元素的量,得出它们的比例,这样根据已知的半衰期年代,便可计算出它的绝对年代。
这些间接的绝对年代测定的准确性,也有赖于标本与沉积年代的关系;如果年代测定还有赖于与其他沉积的相关,则其可靠性又差了一段。总之,绝对年代测定法虽然给人们一个年代的数目,但不要忘记,这只是一种估计,并不是准确数目。
(2)相对年代测定法
相对年代是使化石年代与其他东西的年代发生联系,如与其他化石、旧石器文化或地质事件相联系,从而来确定化石的年代。在不能使用绝对年代测定法时,使用相对年代测定法是很有用的。但是这种方法的准确性受到一系列因素的影响。
相对年代测定法主要是利用化石与它的沉积物的关系。当骨骼被埋藏时,它们逐渐吸收土壤中的某种元素。埋藏的时间越长,它们吸收得越多。比较各骨中这些化学物质的量,就可得知其相对的年代。如果人化石与其周围的动物化石埋藏时间是相同的,则两者中的各种元素的百分率会是一样的,如果人骨是埋藏在较晚的层位中,而后与较老的动物骨骼相混杂,则人骨内的各种元素的量会较少。最早用这种方法是分析骨中氟(Fluorine)的含量,例如在上世纪末和20世纪初时,初次用含氟量来判别在南斯拉夫克拉皮纳(Krapina)地点发现的人化石是否与该地点的绝灭动物群的骨骼是同时化的,从而确定了克拉皮纳人在尼人中的地位。其他常用的元素有氮和铀。这些化学测定法完全决定于当地的土壤条件,而不能用来比较不同的地点,即使是互相邻近的地点也不行。随着当地条件的变化,这种方法得出的结果有时不一致,或者根本不能应用。特别是人类化石,要考虑到在近10万年内埋葬的习俗逐渐风行起来。
相对年代的另一种测定方法,是确定出产化石的沉积,或者化石本身在当地的地层顺序、考古顺序或者动物进化顺序中的位置,从而测定其年代。
根据出产化石的地层与已知地层的特征相对比,从而确定化石的年代。例如,在东非肯尼亚特卡纳湖的一二百万年前的沉积中发现的人类化石的地层层位,可以用火山的凝灰岩而追踪其相互关系。又如欧洲的许多尼人的相对地位,可以用西欧当地的温度变化的序列、古土壤的成分以及其他受温度影响的地质现象来确定。
用考古器物的文化顺序,来测定年代是有很大困难的。人类技术的进步,更多是增加新的工具,而不是抛弃旧的。现代人还有用很原始的石器工具的。如果单从极简单的工具来判断,则可能会把晚的东西弄得很早。可是如果发现一把铁斧,则此地点肯定是相当晚的。所以,只能从最先进的工具来确定一个地点在当地文化顺序中的地位。
目前,锗的分析方法主要有光度法、极谱法、原子吸收光谱法、氢化物发生-原子荧光光谱法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法等。
62.2.3.1 蒸馏分离-苯芴酮-十六甲烷基三甲基溴化铵光度法
方法提要
试样经硝酸-磷酸分解,难溶试样用氢氟酸-硝酸-磷酸分解或过氧化钠、氢氧化钠熔融分解。在6mol/LHCl溶液中,锗以四氯化锗形态经蒸馏与干扰元素分离。加磷酸使与锡、钼生成配合物,加过氧化氢将砷、锑氧化至高价,致使这些元素不被蒸馏,达到完全分离。
分取部分蒸馏液,在亚硫酸钠存在下的稀盐酸介质中,锗和苯芴酮、十六烷基三甲基溴化铵形成稳定的橙红色三元配合物,于分光光度计上,在波长508nm处,测定吸光度计算锗量。本方法适用于稀有和有色金属等一般矿石和岩石中锗含量测定。测定范围w(Ge):(0.5~500)×10-6。
仪器
分光光度计。
试剂
硼酸。
过氧化钠。
氢氧化钠。
过氧化氢。
硝酸。
磷酸。
氢氟酸。
盐酸。
亚硫酸钠溶液(200g/L)。
氢氧化钠溶液(250g/L)。
十六烷基三甲基溴化铵溶液(10g/L)称取1.0g十六烷基三甲基溴化铵于200mL烧杯中,加少量沸水,搅拌溶解,溶液清亮后冷却,移入100mL容量瓶中,用水稀释至刻度,混匀。
苯芴酮溶液(0.6g/L)称取60mg苯芴酮(C19H12O5),溶解于100mL(1+49)HCl的无水乙醇中,混匀。
锗标准储备溶液ρ(Ge)=100.0μg/mL称取0.0720gGeO2于铂坩埚中,加1.0gNa2CO3,置高温炉中逐渐升温至900℃保持10min,取出冷却。在烧杯中用热水浸取熔块,洗出坩埚,用(1+2)H2SO4中和至酚酞褪色后过量4mL,加热逐去二氧化碳,冷却。移入500mL容量瓶中,用水稀释至刻度,混匀。
锗标准溶液ρ(Ge)=5.0μg/mL用水稀释锗标准储备溶液配制。
酚酞指示剂(1g/L)乙醇溶液。
校准曲线
取0.0mL、1.0mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL锗标准溶液,置于一组50mL容量瓶中,加6.30mL(1+1)HCl、1mL200g/LNa2SO3溶液、5mL十六烷基三甲基溴化铵溶液、3mL苯芴酮溶液,立即用水稀释至刻度,混匀。在分光光度计上,用1~3cm比色皿,以试剂空白作参比,于波长508nm处测量吸光度。绘制校准曲线。
分析步骤
根据试样中锗的含量,称取0.5~1g(精确至0.0001g,锗含量大于20×10-6时,称取0.5g)试样,置于150mL烧杯中,加15mLHNO3、6mLH3PO4,盖上表面皿,加热煮沸至氧化氮的黄色逸尽。移去表面皿,继续加热蒸发至赶尽硝酸,取下冷却。加20mL(1+1)HCl,立即将试液移入蒸馏瓶中,用20mL(1+1)HCl分次洗烧杯并注入蒸馏瓶,加2~3mLH2O2。
含硅高的试样:将试样置于铂坩埚中,加10mLHF,在水浴上蒸发至湿盐状,加5mLHNO3,蒸发至小体积,加少量硼酸,2~3mLHNO3,继续蒸发至湿盐状。加15mLHNO3、6mLH3PO4,微热溶解盐类,移入烧杯中,按一般有色金属矿石分析步骤溶样。
含锡石等难溶矿物的试样:将试样置于银坩埚中,加3~4gNa2O2、2gNaOH,于650~700℃高温炉中熔融分解试样。冷却,加10mL热水浸取,浸取物移入蒸馏瓶中,水洗坩埚(控制体积不超过20mL)。加3mLH3PO4、2mLH2O2、30mLHCl。
蒸馏:冷凝管下端插入预先盛有5mL水的量筒中,加热蒸馏,待馏出液达30~50mL后即可停止蒸馏,用水洗冷凝管。将馏出液移入50mL容量瓶中,用水稀释至刻度,混匀。
分取10.0~20.0mL蒸馏后试液,于另一个50mL容量瓶中,加1mLNa2SO3溶液、1滴酚酞指示剂,用氢氧化钠溶液中和至出现红色,加6.30mL(1+1)HCl,混匀,冷却。加5mL十六烷基三甲基溴化铵溶液、3mL苯芴酮溶液,立即用水稀释至刻度,混匀。以下按校准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
1)四氯化锗易挥发,在试样分解过程中避免混入盐酸和氯离子。当试液处理至转化为盐酸溶液后,须连续操作蒸馏,不宜放置太久,以避免锗的损失。
2)中和时,氢氧化钠溶液应缓慢滴加,勿使溶液过高发热,必要时可在冷水浴中进行中和,防止四氯化锗挥发。
62.2.3.2 四氯化碳萃取分离-苯芴酮-十六烷基三甲基溴化铵光度法
方法提要
试样经硝酸-氢氟酸-磷酸分解,在9~10mol/LHCl的溶液中,用四氯化碳萃取锗与干扰元素分离,再用水将锗从有机相中反萃取;在稀盐酸介质中,有亚硫酸钠存在下,锗和苯芴酮-十六烷基三甲基溴化铵形成稳定的橙红色三元配合物,于分光光度计上,在波长508nm处,测量吸光度计算锗量。本方法适用于稀有和有色金属等一般矿石和岩石中锗含量的测定。尤其适用于酸溶矿中。测定范围w(Ge):(0.5~100)×10-6。
仪器
分光光度计。
试剂
硼酸。
硝酸。
氢氟酸。
磷酸。
盐酸。
四氯化碳。
亚硫酸钠溶液(200g/L)。
十六烷基三甲基溴化铵溶液(10g/L)溶于沸水。
苯芴酮溶液(0.6g/L)称取60mg苯芴酮(C19H12O5),溶解于(1+49)HCl的无水乙醇中,移入100mL容量瓶,混匀。
锗标准溶液ρ(Ge)=1.0μg/mL用水稀释锗标准储备溶液(详见62.2.3.1)配制。
酚酞指示剂(1g/L)乙醇溶液。
校准曲线
取0mL、0.50mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL锗标准溶液,分别置于一组125mL分液漏斗中,补加水至10mL,加入30mLHCl,加约0.1g无水硫酸钠,加20mL四氯化碳,萃取2min。静置分层后,将有机相放入另一个125mL分液漏斗中,水相再用20mL四氯化碳萃取2min。静置分层后,两次有机相合并,水相弃去。有机相用5~10mL9mol/LHCl振荡洗涤2次,每次振荡1min,水相弃去。有机相用10mL水反萃取3min,反萃取2次,萃取的水相合并于50mL容量瓶中。加6.30mLHCl,混匀。加1mL亚硫酸钠溶液,5mL十六烷基三甲基溴化铵溶液,3mL苯芴酮溶液(每加一种溶液均需混匀),立即用水稀释至刻度,混匀。在分光光度计上,用1~3cm比色皿,以试剂空白作参比,于508nm波长处测量吸光度,绘制校准曲线。
分析步骤
根据试样中锗的含量,称取0.25~1g(精确至0.0001g,锗含量小于20×10-6,称取0.5g试样;锗含量大于20×10-6,则称取0.25g)试样,置于瓷坩埚中,放入高温炉内逐渐升高温度至500~600℃灼烧2h,除去硫化物,取出冷却。用毛刷将试样刷入100mL聚四氟乙烯烧杯中,加水润湿,加5mLHNO3,10mLHF、5mLH3PO4,置于控温电热板上160℃加热分解试样,逐步升高温度至200~220℃(如有单体硫析出,反复加硝酸,继续加热,直至硫完全被氧化),升高温度至300℃,加热至呈透明稠状液体,取下。加入约50mg硼酸,用少许水吹洗杯壁,混匀,继续加热蒸至呈透明稠状,取下冷却。加10mL水,加热使盐类溶解,冷却至室温。将溶液移入125mL分液漏斗中,用30mLHCl分几次洗涤烧杯,合并于分液漏斗中(溶液的盐酸浓度应大于9mol/L),以下按校准曲线进行测定。
锗含量的计算参见式(62.2)
注意事项
四氯化碳萃取锗,回收率一般为90%左右,因此校准曲线需在相同条件下进行萃取。
62.2.3.3 苯萃取富集-水杨基荧光酮光度法
方法提要
在磷酸介质中,有阳离子表面活性剂溴化十六烷基三甲铵存在下,锗和水杨基荧光酮能形成灵敏度很高的三元配合物,最大吸收峰位于波长505nm,表观摩尔吸光系数为1.8×105。配合物的溶液放置一周后,其吸光度仍不变。用苯萃取富集四氯化锗并与伴生干扰元素分离。灵敏度高,稳定性好,可用于化探试样中μg/g级锗的测定。
仪器
分光光度计。
试剂
亚硫酸钠。
磷酸。
硝酸。
氢氟酸。
盐酸。
苯。
溴化十六烷基三甲铵溶液(40g/L)。
水杨基荧光酮溶液(3.5g/L)。
锗标准溶液ρ(Ge)=1.0μg/mL配制方法同62.2.3.2。
校准曲线
吸取0mL、0.10mL、0.20mL、0.30mL、0.40mL、0.50mL锗标准溶液分别置于一组25mL比色管中,加水稀释至约10mL,加5mLH3PO4、2mL水杨基荧光酮溶液、2mL40g/L溴化十六烷基三甲铵溶液,用水稀释至刻度,混匀。将溶液移入4cm比色皿中,在分光光度计上,以试剂空白作参比,于505nm波长处测量吸光度。绘制校准曲线。
分析步骤
称取0.1~0.2g(精确至0.0001g)试样,置于聚四氟乙烯塑料坩埚中,滴入数滴水润湿,加入2mLH3PO4、3mLHNO3、10mLHF,加盖(留一小缝),置于电热板上加热,待试样分解后,用水洗净坩埚盖,并蒸发至2mL体积取下。冷却后,用水吹洗坩埚壁,继续蒸至小体积,以赶尽硝酸和氢氟酸。取下冷却后,加15mL9mol/LHCl加热溶解,再用10mL9mol/LHCl将溶液移入分液漏斗中,加少许亚硫酸钠还原溶液中可能存在的氧化剂,混匀后,加10mL苯萃取2min以上,待分层后弃去水相。用9mol/LHCl洗涤一次,分层后弃去水相。加水10mL,反萃取1min,分层后将水相放入25mL比色管中,加5mLH3PO4、2mL3.5g/L水杨基荧光酮溶液、2mL溴化十六烷基三甲铵溶液,用水稀释至刻度,混匀。以下按校准曲线进行测定。
锗含量的计算参见式(62.2)。
62.2.3.4 2,4二氯苯基荧光酮光度法
方法提要
试样经硝酸、氢氟酸、硫酸分解,在硫酸介质中,在溴化十六烷基三甲基铵(CTMAB)存在下,2,4-二氯苯基荧光酮与锗生成组成比为2∶1和4∶1两种配合物。配合物最大吸收峰在513nm波长处,其对比度Δλ=43nm。配合物吸收峰非常尖锐,半宽仅40nm,灵敏度高,选择性良好。配合物形成速度快,发色后即可测量吸光度,并在48h内保持不变。本法可直接测定一般试样中痕量锗,但含锡较多的试样仍应预先分离。
仪器
分光光度计。
试剂
硫酸。
硝酸。
氢氟酸。
溴化十六烷基三甲基铵(CTMAB)(10g/L)。
2,4-二氯苯基荧光酮(50mg/L)乙醇溶液每100mL含0.5mL(1+1)H2SO4,避光保存。
锗标准溶液ρ(Ge)=2.0μg/mL用水稀释锗标准储备溶液(详见62.2.3.1)配制。
校准曲线
吸取0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.50mL、3.50mL锗标准溶液置于一组50mL容量瓶中,加20mL(1+1)H2SO4、1.5mL2,4-二氯苯基荧光酮溶液、10mLCTMAB溶液,用水稀释至刻度,混匀。以空白试验溶液为参比,用2cm比色皿,于波长513nm处测量吸光度。绘制校准曲线。
分析步骤
称取0.1~0.3g(精确至0.0001g)试样,置于聚四氟乙烯塑料坩埚中,加5mLHNO3、7~8mLHF,加热分解并蒸发至小体积后,加20mL(1+1)H2SO4,蒸发到硫酸冒浓烟。冷却后转移到100mL容量瓶中(内盛约50mL水),用水稀释至刻度,混匀,干过滤。
分取部分溶液于50mL容量瓶中,补加硫酸至3.6mol/L,以下按标准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
1)温度和试剂加入顺序对吸光度影响不大。摩尔吸光系数ε=1.7×105。如用吐温、OP代替CTMAB尚可提高至1.8×105。
2)为防止锗在高浓度盐酸介质中有逸失的危险,采用硫酸体系。酸度在1~3.6mol/L范围内,吸光度基本不变。为避免钨、钼、铌、钛、锡等干扰,采用3.6mol/LH2SO4。
3)在2mol/LH2SO4介质中,常见元素及锆、钛等干扰都很小,仅钨、钼等只允许存在20μg。提高酸度至3.6mol/L,可允许存在4mgMoO2-4,2mgNb2O5、Ta2O5,1mgSb3+,0.5mgWO2-4,34μgSn4+。
62.2.3.5 锗钼酸-罗丹明B光度法
方法提要
试样以氢氟酸-硝酸-高氯酸-硫酸分解后,在0.12mol/LHCl中,锗(Ⅳ)与钼酸铵生成锗钼酸杂多酸阴离子。提高介质酸度后,使其与罗丹明B一价阳离子缔合,生成不溶性化合物而呈现“固态显色”反应,加入动物胶或表面活性剂保持胶溶状态,使其颜色强度稳定。于波长570nm处有最大吸收,借以用光度法测定锗。
仪器
分光光度计。
试剂
硝酸。
氢氟酸。
盐酸。
高氯酸。
硫酸。
五氧化二磷溶液(100.0μg/mL)用磷酸氢二钾配制。
五氧化二磷-三氯化铁-酒石酸-钼酸铵溶液8mL100.0μg/mLP2O5溶液、0.25mL100g/L三氯化铁溶液、2mL150g/L酒石酸溶液与10mL100g/L钼酸铵溶液混匀。用时现配。
动物胶溶液(20g/L)2g动物胶加75mL40~45℃温水,浸泡30min后,加25mL(1+1)HCl溶解,混匀。2~3日内可用。
三氯化铁溶液(100g/L)。
酒石酸溶液(150g/L)。
罗丹明B(0.25g/L)4mol/LH2SO4介质。
混合显色剂2mL罗丹明B、10mL动物胶溶液、30mL(1+1)H2SO4与50mLH3PO4混匀,过滤使用。用时现配。
锗标准储备溶液ρ(Ge)=100.0μg/mL称取14.41mg二氧化锗,置于铂坩埚中,加一颗粒状氢氧化钠(用无水乙醇洗净其表面)和2~3mL水,缓缓加热溶解。冷却,加20mL水和3.5mL4mol/LHCl,移入100mL容量瓶中,加水稀释至刻度,混匀。将此溶液逐级稀释制得。
锗标准溶液ρ(Ge)=1.0μg/mL由锗标准储备溶液稀释配制。
校准曲线
吸取0mL、0.50mL、1.00mL、1.50mL、2.00mL、3.00mL、4.00mL锗标准溶液于一组25mL干燥烧杯中,补加0.12mol/LHCl至15mL,在不断摇动下,缓缓加入1mL五氧化二磷-三氯化铁-酒石酸-钼酸铵溶液(空白及标准系列应另加0.1mLFeCl3溶液),混匀。放置15~20min,加1mL酒石酸溶液,混匀。放置3~5min,在摇动下缓缓加入混合显色剂5mL,混匀。放置15min后(至少3h内稳定),在分光光度计上,用3cm比色皿,以试剂空白作参比,于570nm波长处测量吸光度,绘制校准曲线。
分析步骤
称取0.1~0.2g(精确至0.0001g)试样,置于铂坩埚中,加入约6~8mgWO3(试样中含钨较高时不必加),加1mL(1+1)HNO3、0.5mLHClO4和8~12滴(1+1)H2SO4,混匀,加7~8mLHF,加热至开始冒浓烟,再加5~6mLHF,继续加热至浓烟冒尽。冷却,加1.5mL4mol/LHCl,微热(低于60℃)将可溶性盐类溶解,用水冲洗入50mL容量瓶中,并稀释至刻度,混匀。静置过夜澄清。
分取5.0~15.0mL澄清溶液(含锗小于4μg,同时铁含量不超过空白溶液中所加铁量一倍)于25mL干燥烧杯中,补加0.12mol/LHCl至15mL,以下按校准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
1)硅、磷和砷与钼酸铵反应,干扰测定。磷和砷(<100μg)所形成的杂多酸,其解离度较锗大,可被大量酒石酸(其量足以配位钼酸根离子时)所破坏,从而可选择性地除去它们的干扰。磷钼酸难以定量地被酒石酸破坏而使结果稍有偏高,50~100μgP2O5的残留影响一致(相当于0.25~0.30μgGe),故在操作中特地加入一定量五氧化二磷(50μg),用以抵消试样中含有痕量磷时的影响。硅必须在制备试液过程中除去。大量可溶性钨酸根阴离子也能引起正干扰,但经氢氟酸处理、硫酸冒烟,可将钨酸沉淀,残留的少量钨没有影响。若用硫酸氢钾或硫酸氢钠熔融分解试样,则可溶性钨酸根大为增多,将影响锗的测定。比色溶液中大量铁存在(Fe大于3~4mg)时,会引起负干扰。
2)在批量分析中,每一试样从加入钼酸铵至加罗丹明B混合色剂的相距时间,应保持大致相同,且不宜过长。如过程过长,试剂空白颜色加深。
3)试液中含有大量砷和磷时,与钼酸铵生成杂多酸析出沉淀,酒石酸也难以将它们完全破坏,会导致结果偏高。
62.2.3.6 茜素红S-高氯酸-钒底液极谱法
方法提要
试样以氢氟酸-硝酸-高氯酸-硫酸分解,在高氯酸介质中,有钒(Ⅳ)存在下,锗-茜素红S配合物,可产生极灵敏的催化导数极谱波,峰电位为-0.57V。锗的浓度在0.002~0.2μg/mL范围内呈线性关系。借以进行极谱法测定。检测下限可以达到0.001μg/g。
仪器
示波极谱仪,三电极系统。
试剂
硫酸。
硝酸。
氢氟酸。
高氯酸。
氢氧化钠溶液(40g/L)。
钒(Ⅳ)溶液c(V4+)=0.1mol/L称取11.7gNH4VO3(偏钒酸铵)于800mL烧杯中,加约400mL水,加热溶解后缓慢加入50mL(1+1)HCl,继续加热至近沸,以抗坏血酸还原至呈深蓝色,并使沉淀全部溶解,冷却后用水稀至1000mL。
茜素红-S溶液(10g/L)。
锗标准溶液ρ(Ge)=0.10μg/mL用水稀释锗标准储备溶液(详见62.2.3.1)配制。
二甲基黄指示剂(0.05g/L)。
校准曲线
吸取0mL、0.10mL、0.20mL、0.40mL、0.60mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL锗标准溶液于一组25mL比色管中,加入1滴二甲基黄指示剂,以氢氧化钠溶液调至溶液呈黄色后,再以0.5mol/LHClO4调至红色,并过量3mL。加入2mL茜素红-S溶液、3mLV4+溶液,用水稀释至刻度,混匀。放置0.5h后,倾入电解池中,在示波极谱仪上进行导数极谱测定(起始电位-0.4V)。
分析步骤
称取0.5g(精确至0.0001g)试样,置于塑料烧杯中,用少量水润湿,加5滴(1+1)H2SO4、5mLHNO3、5~7mLHF,在电热板上加热至冒白烟,补加5滴(1+1)H2SO4,继续加热蒸发至近干。取下冷却,加10mL水,加热溶解盐类,用热水转入50mL容量瓶中,稀释至刻度,混匀。
分取上层清液5mL于25mL比色管中,以下按校准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
1)硒、钛有干扰,大量铅、锌、铁、钙、镁、铜、锰、钴、镍、砷、锡、钼、银、汞,1mg铝、锑、铋、镉、镓、铊,0.5mg金、铂、钯、铟、铀、钨、钒(Ⅴ)、碲、锆、铌以及大量SO2-4、PO3-4、NO-2、CN-、BO3-3等不干扰测定。钛的干扰,可用EDTA掩蔽。硒的干扰,在用硝酸、硫酸溶矿过程中,蒸干时已挥发掉。
2)底液各组分的影响情况为:随着高氯酸浓度增高,峰电位向正向移动,高氯酸浓度在0.04~0.08mol/L范围内,波高稳定,大于0.08mol/L则波高逐渐下降。无茜素红-S存在时,不出现极谱波;引入少量茜素红-S,即出现灵敏的极谱波,且随用量增加,波高急剧增高;当茜素红S浓度为0.08%时,波高达到最大;在0.04%~0.12%范围内,波高变化不大。茜素红S量继续增大时,波高又急剧下降。无钒(Ⅳ)存在时,也不出现极谱波,钒(Ⅳ)浓度大于0.012mol/L,波高基本不变。
62.2.3.7 苏木精-钒(Ⅳ)底液极谱法
方法提要
试样经硝酸、氢氟酸、硫酸分解,在草酸介质中锗-苏木精-钒(Ⅳ)于-0.59V(S.C.E)有一灵敏的催化波。在0.01mol/L草酸-0.0033mol/L苏木精-0.0024mol/LV4+-0.006mol/LEDTA所组成的底液中,灵敏度高和选择性较好,线性范围为1.2×10-4~8×10-2μg/mL。测定矿石中痕量锗,检测下限为5×10-3μg/g。
仪器
示波极谱仪,三电极系统。
试剂
硫酸。
硝酸。
氢氟酸。
氢氧化钠溶液(40g/L)。
草酸溶液(25g/L)。
EDTA溶液c(EDTA)=0.1mol/L。
苏木精溶液(5.5g/L)。
钒(Ⅳ)溶液c(V4+)=0.1mol/L称取11.7gNH4VO3溶于400mL近沸的水中,冷却后加入50mL(1+1)HCl,搅拌下加入90mL100g/L抗坏血酸,加热使沉淀溶解,冷至室温后,用水稀释至1000mL。
锗标准溶液ρ(Ge)=0.050μg/mL、ρ(Ge)=0.50μg/mL由锗标准储备溶液(62.2.3.1)稀释配制。
二甲基黄指示剂(0.05g/L)。
校准曲线
吸取0mL、0.06mL、0.10mL、…、4.00mL锗标准溶液(0.050μg/mL)和0mL、1.00mL、2.00mL、…、4.00mL锗标准溶液(0.50μg/mL),分别置于一组25mL容量瓶中,加入1滴(1+1)H2SO4,加1滴二甲基黄指示剂,滴加氢氧化钠溶液至指示剂恰呈黄色,用草酸溶液回滴至指示剂呈红色后过量1.5mL。加入1.5mLEDTA溶液,5mL苏木精溶液,6mLV4+溶液,用水稀释至刻度,混匀。在示波极谱仪上,于原点电位-0.4V处,用导数部分扫描。绘制校准曲线。
分析步骤
称取0.1~0.5g(精确至0.0001g)试样,置于石墨坩埚中,用水润湿后加硝酸、氢氟酸各5mL和5滴(1+1)H2SO4,加热至冒三氧化硫白烟,再加5滴(1+1)H2SO4,继续加热至冒三氧化硫白烟3min。稍冷后,加水溶解盐类,转入50mL容量瓶中,用水稀释至刻度,混匀,澄清。
分取1.0~5.0mL清液置于25mL容量瓶中,以下按校准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
1)锗-苏木精-钒(Ⅳ)在草酸、硫酸、磷酸、高氯酸、一氯乙酸、硫酸-磷酸、硫酸-硫酸铵、盐酸-氯化铵所组成的微酸性介质中,均显示催化波,但在草酸中灵敏度最高。在pH1.6~1.8时,催化电流最大,在此pH两侧电流随pH变动而下降,故控制底液最终pH1.6~1.8。
2)无苏木精时不显波,加苏木精后,催化电流随底液中苏木精浓度增加而升高,浓度在这60mg/L时,催化电流值几乎不变。钒(Ⅳ)浓度对催化电流的影响似苏木精,当底液中钒(Ⅳ)浓度为0.024~0.032mol/L时,催化电流达最大值而且稳定。EDTA不仅可有效地掩蔽干扰离子,而且有助于提高催化电流值。当底液中EDTA浓度为0.004~0.006mol/L时,催化电流达最大值。
3)在25mL体积中,对0.5μgGe来说,15mgBa2+,10mgBr-,6mgF-,5mgFe3+、La3+、Rb+,3mgMg2+、Al3+、Bi3+,1mgZn2+、Au3+、Ag+、Co2+、Sn2+、Ni2+、As3+、Tl+、Be2+,0.5mgHg2+、Mn3+、Sr2+、Zr4+,0.1mgMo6+,0.05mgCd2+、Pb2+、Te4+、Ti4+、U6+、W6+,0.01mgSb3+、Se4+、Th4+的存在,均不干扰测定,故本法有较高的选择性。一般矿样可不经分离直接测定。
62.2.3.8 石墨炉-原子吸收光谱法
方法提要
试样经硝酸、氢氟酸分解(硅酸盐试样)或硝酸、盐酸分解(硫化矿试样),于盐酸介质中用苯萃取锗,再用水反萃取锗,以分离干扰元素。以镍-草酸铵-氢氧化铵为基体改进剂,用石墨炉原子吸收光谱法测定。可测定0.x×10-6的锗。
仪器
原子吸收光谱仪(配有石墨炉、背景校正器)。
试剂
氢氟酸。
盐酸。
硝酸。
苯。
氯化钡溶液(100g/L)。
混合基体改进剂称取0.3522gNi2O3,用5mLHNO3温热溶解;称取12.5g草酸铵,用200mL水温热溶解。将以上两种溶液同时移入500mL容量瓶中,加入53mL氢氧化铵,混匀,再加入125mLHNO3,冷却,用水稀释至刻度,混匀。
锗标准溶液ρ(Ge)=0.20μg/mL由锗标准储备溶液(62.2.3.1)稀释配制。
校准曲线
吸取含锗0μg、0.05μg、…、0.60μg的锗标准溶液置于一组50mL分液漏斗中,加5mL水、10mLHCl,加入10mL苯,萃取3min。分层后弃去水相,准确加入5mL水反萃取3min,用水洗漏斗颈,水层放入10mL比色管中,加入2mL混合基体改进剂,稀释至刻度,混匀。参考表62.6、表62.7的仪器工作条件进行测定,绘制校准曲线。
表62.6 原子吸收光谱仪参考工作条件
表62.7 石墨炉参考工作条件
分析步骤
1)硅酸盐分析
称取0.5g(精确至0.0001g)试样,置于塑料坩埚中,用少量水润湿,加10mLHNO3,5mLHF,加热溶解,蒸发至恰干。加5mL水温热浸取残渣,冷至室温,加入10mLHCl,然后用8mol/LHCl移入50mL或25mL容量瓶中,并稀释至刻度。澄清。
分取10.0~15.0mL清液于50mL分液漏斗中,加入10mL苯,萃取3min。分层后弃去水相,加入5.00mL水反萃取3min,用水洗漏斗颈,水层放入10mL比色管中,加入2mL混合基体改进剂,稀释至刻度,混匀。以下按校准曲线进行测定。
2)硫化矿分析
称取0.1g(精确至0.0001g)试样置于150mL烧杯中,用水润湿,加入10mLHNO3,待剧烈作用后,在电热板上加热并蒸至恰干。加少量水温热溶解,稍冷后加0.5mL(1+1)HCl,用水转入25mL比色管中,加2mLBaCl2溶液,稀释至刻度,混匀。放置过夜。
分取5.0mL清液于50mL分液漏斗中,加10mLHCl、10mL苯,以下按校准曲线进行测定。
锗含量的计算参见式(62.1)。
注意事项
石墨炉法中,钼、铁、钴、铜、硒、碲、硫酸根、磷酸根、氯根均产生程度不同的干扰,经苯萃取、水反萃取后,溶液中仍然留有相当量的氯根、铁等。用草酸铵-氢氧化铵-镍混合基体改进剂,可使干扰完全消除。硫酸根大于200μg/mL时(由于在氩相中能形成GeS),仍有负干扰;当分析硫化矿物时,必须在萃取之前用氯化钡沉淀除去大部分的硫酸根。
参 考 文 献
敖卫华,黄文辉,马延英,等.2007. 中国煤中锗资源特征及利用现状 [J]. 资源与产业,9 ( 5) : 16 -18
鲍长利,程信良,刘春华,等 . 1992. 甲基异丁酮 - N,N - 二甲基甲酰胺萃取石墨炉原子吸收法测定植物试样中微量锗 [J]. 分析化学,20 ( 4) : 429 -432
董岁明,张理平.2006. CL -N235萃淋树脂吸萃分离锗的研究 [J]. 稀有金属与硬质合金,34 ( 3) : 1 -4
何应律,赵锦端,谢静,等 . 1989. 邻氯苯基荧光酮萃取浮选吸光光度法测定微量锗的研究 [J]. 分析化学,17 ( 7) : 639 -641
李慧芝,韩斌,陈亚明 . 2004. 巯基葡聚糖凝胶分离富集 - 光度法测定微量有机锗和无机锗 [J]. 分析科学学报,20 ( 3) : 329 -330
李世平 . 1996. 关于 N235- 酒石酸体系萃取分离锗锌的研究 [J]. 稀有金属,20 ( 5) : 334 - 337
林琳,刘一真,韩华云,等 . 1994. 正丁醇萃取石墨炉原子吸收法测定微量锗 [J]. 光谱实验室,11( 3) : 32 -37
罗道成,刘俊峰 . 2005. 流动注射 - 离子交换分离 - 二溴邻硝基苯基荧光酮光度法测定煤中锗 [J]. 煤炭学报,30 ( 4) : 511 -515
罗友云,周方钦,黄荣辉,等 . 2007. 萃淋树脂微色谱柱分离富集 - 苯基荧光酮光度法测定中草药中痕量锗和钼 [J]. 分析科学学报,23 ( 2) : 216 -218
倪瑞星,郭志斌,籍雪平 . 2001. 硅藻土 TBP 反相萃取层析法连续分离钼和锗 [J]. 分析试验室,20( 6) : 26 -28
邱德仁,邱维和,史佩芬 . 1994. 有机锗制品中无机锗的分离与电感耦合等离子体光谱法的测定 [J].复旦学报 ( 自然科学版) ,33 ( 6) : 681 -684
王安亭,潘吉平 . 2007. 用仲辛醇萃取锗的研究 [J]. 中国测试技术,33 ( 1) : 82 -83
铼通常采取光度法、极谱法和ICP-MS法等进行测定。
光度法测铼的试剂很多,特别是三苯甲烷、噻嗪、吖啶类染料以及肟类、含硫基的有机试剂等均能与Re7+或Re4+形成有色配合物,大部分可被有机溶剂所萃取,一定量的钼不干扰测定。经萃取分离后的有机相有很深的颜色并与浓度成正比,可直接进行铼的光度法测定。
有关试剂的测试条件及灵敏度列于表62.19中。
表62.19 一些光度法测定铼的灵敏度比较
续表
肟类有机显色剂需预先将ReO-4与其他元素分离,再以氯化亚锡还原为Re(Ⅳ),然后显色测定。
62.5.3.1 萃取分离-硫氰酸盐光度法
方法提要
试样经氧化镁烧结分解,水浸取,大量Fe、Mo、W、Nb、V、Ca、Mg、Al、Bi、Mn、Ag、Zn、Ni、Co、Cr、Sn、Cu、Te等不进入溶液或不干扰铼的测定。在酒石酸存在下,调节pH8~9,用氯化四苯胂-三氯甲基烷萃取分离高铼酸,可进一步分离V、W、Mo、Nb、Cu、Cr等干扰离子。
将三氯甲烷分出后置水浴上蒸干,以6mol/LHCl溶解高铼酸盐,以二氯化锡还原,硫氰酸盐显色,乙酸丁酯萃取,有机相于分光光度计430nm波长处,测量吸光度测定铼量。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,也适用于钨矿石中铼量的测定。测定范围w(Re):(1~300)×10-6。
仪器
分光光度计。
试剂
氧化镁。
酒石酸。
盐酸
过氧化氢。
氢氧化铵。
三氯甲烷。
乙酸丁酯。
碳酸氢钠溶液(100g/L)。
氯化四苯胂(TPAC)溶液(20g/L)。
氯化钠溶液(100g/L)。
硫氰酸钾溶液(250g/L)。
二氯化锡溶液(350g/L)在(1+1)HCl中投入一定量颗锡粒,贮于棕色瓶中。
铼标准储备溶液ρ(Re)=50.0μg/mL称取10.00mg高纯金属铼于100mL烧杯中,加20mL(1+1)氢氧化铵,5mLH2O2,置水浴上溶解并蒸干,加少量水温热溶解,移入200mL容量瓶中,用水稀释至刻度,混匀。
铼标准溶液ρ(Re)=5.0μg/mL用水稀释铼标准储备溶液制得。
酚酞指示剂(10g/L)乙醇溶液。
校准曲线
曲线A:分取0mL、0.50mL、1.00mL、1.50mL、2.00mL铼标准溶液。曲线B:分取0mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL铼标准溶液,分别置于一组25mL带塞比色管中,补加水至8mL,加8mLHCl、混匀。加入1.5mLKSCN溶液,1.5mLSnCl2溶液(每加一次试剂都混匀),放置20min后,加入6.0mL(曲线A)或10.0mL(曲线B)乙酸丁酯,振摇15min,放置分层后,取有机显色液于分光光度计上,在波长430nm处,用3cm(曲线A)或2cm(曲线B)比色皿,以乙酸丁酯作参比测量吸光度,绘制校准曲线。
分析步骤
根据铼的含量,称取0.1~2g(精确至0.0001g)试样。铼量小于5×10-6,称取2g;5×10-6~30×10-6,称取1g;30×10-6~60×10-6,称取0.5g;大于60×10-6,则称取0.1~0.3g。也可用萃取剂体积进行调节。将试样置于预先盛有2gMgO的20mL瓷坩埚中(称取1g试样增加2gMgO),搅拌均匀,再覆盖约0.5gMgO,置于高温炉中由低温逐渐升温至(630±20)℃保持2h,取出冷却。
将烧结物倒入已盛有4~5滴H2O2的100mL烧杯中,以热水洗坩埚数次,洗液倒入烧杯用水冲稀至50mL体积左右(浸出体积不宜太小,煮沸后体积约有30mL即可),盖上表面皿,置电炉上煮沸10min,再移在低温控温电热板上保温2h,使溶液清澈后取下冷却。沉淀用中速滤纸过滤,滤液以100mL烧杯承接,沉淀用水洗5~6次。
滤液置控温电热板上蒸发至约10mL,加入1g酒石酸,取下,加1滴酚酞指示剂,用(1+1)氢氧化铵中和至溶液变红,用少量水移入已盛有2mLNaHCO3溶液的60mL分液漏斗中,体积控制为20mL,加入1mLTPAC溶液,10mL三氯甲烷,萃取2min,静置分层,用干滤纸条擦净漏斗颈部存在的水珠,小心地将三氯甲烷放入20mL干烧杯中。向水相中再加5mL三氯甲烷,萃取2min,同法将三氯甲烷合并入20mL烧杯中,加入0.1mLNaCl溶液,置沸水浴上蒸干。加入6mL(1+1)HCl,继续置沸水浴上加热5min,取下冷却。用10mL(1+1)HCl将烧杯内溶液移入25mL带塞比色管中,混匀。以下按校准曲线进行测定。
铼含量的计算参见式(62.2)。
62.5.3.2 环己酮萃取分离-α-糠偶酰二肟光度法
方法提要
试样经氧化镁烧结,热水浸取,大部分元素得到分离。微克量的钼、铋、砷、铅、镍等干扰元素,可用环己酮在碱性溶液中萃取分离。微量高铼酸在4.2~5mol/LH2SO4介质中被氯化亚锡还原为四价,四价铼可催化α-糠偶酰二肟的酸解,产生α-糠偶酰二酮。在320nm处有一新吸收峰(加入柠檬酸可促进催化反应),可检出0.005~0.06μg/mLRe。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,测定范围w(Re):(0.01~100)×10-6。
仪器
分光光度计。
试剂
氧化镁。
过氧化氢。
硫酸c(1/2H2SO4)=12.5mol/L。
环己酮。
三氯甲烷。
氢氧化钠溶液(200g/L)。
硫酸钠溶液(100g/L)。
柠檬酸溶液(192g/L)。
α-糠偶酰二肟溶液0.4gα-糠偶酰二肟溶于100mL乙醇。
氯化亚锡溶液称取0.7gSnCl2·2H2O于200mL烧杯中,加约30mL水,边搅拌边缓慢加入42mLH2SO4,待氯化亚锡全部溶解后移入100mL容量瓶中,用水稀释至刻度,混匀。
铼标准储备溶液ρ(Re)=50.0μg/mL称取25.00mg金属铼置于50mL烧杯中,加入5mLHNO3,5mL(1+1)H2SO4,在控温电热板上加热溶解,蒸发至2~3mL,用水吹洗杯壁,再蒸发至硝酸全部除尽。用水移入500mL容量瓶中并稀释至刻度,混匀。
铼标准溶液ρ(Re)=1.0μg/mL用水稀释铼标准储备溶液制备。
校准曲线
分取0.00mL、0.05mL、0.10mL、0.20mL、0.40mL、0.60mL铼标准溶液置于一组50mL分液漏斗中,加入5mLNaOH溶液、5mLNa2SO4溶液、10mL环己酮,萃取1min,静置分层后弃去水相。往有机相中加10mL水和10mL三氯甲烷,反萃取1min,分层后弃去有机相。水相放入50mL烧杯中,加0.5mL12.5mol/LH2SO4、数滴过氧化氢,置水浴上蒸发至1~2mL,反复加过氧化氢至黄色褪去,用水吹洗杯壁,蒸发至水分及过氧化氢完全逸出。
取下冷却,加2.5mL水、1mL柠檬酸溶液,用少量水将溶液移入10mL比色管中,加2mL2.5mol/LH2SO4,冷却,加2.5mLα-糠偶酰二肟溶液、1.5mLSnCl2溶液,用水稀释至刻度,混匀,放置过夜(温度应不低于20℃),次日于分光光度计上,在波长380nm处测量吸光度,绘制校准曲线。
分析步骤
称取0.5~1g(精确至0.0001g)试样,置于已盛有3gMgO的瓷坩埚中,搅匀,再覆盖约1g,置高温炉中由低温升至700℃保持2h,取出冷却。用热水浸取,加数滴过氧化氢,煮沸30min,用中速滤纸过滤于100mL容量瓶中,用水洗烧杯及沉淀数次,并稀释至刻度,混匀。
分取20.00mL上述溶液于100mL烧杯中,在控温电热板上蒸发至近干,取下,加入5mLNaOH溶液,5mLNa2SO4溶液,移入50mL分液漏斗中,总体积为10mL左右。向分液漏斗中加10.0mL环己酮,萃取1min,以下按校准曲线进行测定。
铼含量的计算参见式(62.1)。
注意事项
烧结过程中,应经常开启炉门,以便充分氧化。
62.5.3.3 苯萃取-丁基罗丹明B光度法
方法提要
试样经氧化镁烧结,热水浸取。在2~3mol/LH3PO4介质中,高铼酸与丁基罗丹明B形成橙红色配合物,可用苯萃取铼的有色配合物,最大吸收峰在565nm波长处,摩尔吸光系数为4×104,借以进行光度法测定。本方法适用于稀有和有色金属等一般矿石和岩石中铼量的测定。测定范围w(Re):(1~300)×10-6。
仪器
分光光度计。
试剂
氧化镁。
磷酸。
氢氧化铵。
苯。
丁基罗丹明B溶液0.1g丁基罗丹明B溶于100mL水中。
铼标准溶液ρ(Re)=5.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。
校准曲线
分取0mL、1.00mL、2.00mL、3.00mL、4.00mL铼标准溶液于一组25mL比色管中,加4mL(1+1)H3PO4,加水稀释至10mL,加入1mL丁基罗丹明B溶液,混匀。准确加入5.0mL苯,萃取1min,静置分层后,在分光光度计上,于560nm波长处,用1cm比色皿测量吸光度,绘制校准曲线。
分析步骤
根据试样中铼的含量,称取0.5~1g(精确至0.0002g)试样置于事先盛有3gMgO的瓷坩埚中,充分搅匀,表面再盖一层,放入高温炉中,逐渐升高温度650~700℃,保持2h,取出冷却。将烧结物移入150mL烧杯中,用40~50mL水浸取,加热煮沸10min,稍冷后进行过滤,用水洗烧杯及滤纸各3次,将滤液加热浓缩至10mL左右,取下稍冷,加4mL(1+1)H3PO4,继续加热蒸发至体积小于10mL,移入25mL比色管中,用水洗烧杯2次,加水稀释至10mL。以下按校准曲线进行测定。
铼含量的计算参见式(62.2)。
注意事项
1)氧化镁纯度对空白影响很大,使用前应进行实验选择。烧结过程中,应稍开启炉门,以充分氧化。
2)显色时的磷酸浓度:铼含量低时,以0.3~1mol/L为宜,大于此酸度,色泽显著降低,小于此酸度,空白稍带颜色,最好控制在0.5~1mol/L。铼含量高时,可提高适当酸度。
3)汞、硝酸根、碘离子,高价锰以及其他氧化剂能与丁基罗丹明B显色,应除去。
4)大于0.1mg的钨、钒和铬影响测定;可分别采用酒石酸、抗坏血酸消除汞、硝酸根、碘离子。
62.5.3.4 催化光度法
方法提要
高铼酸盐可催化氯化亚锡还原碲酸钠成单质碲,在一定时间内所还原的碲量与铼量的浓度成正比,加入保护胶,碲呈棕黑色胶体存在于溶液中,于波长530~570nm,可用作光度法测定。
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
此反应若无高铼酸或其盐类存在时,在相当长的时间内是不会进行的。采用标准加入法,本法可测定0.001~0.1μg/mL铼。
仪器
分光光度计。
试剂
氧化镁。
三氯甲烷。
氢氧化钠溶液(200g/L)。
8-羟基喹啉溶液(25g/L)称取5g8-羟基喹啉于26mL(36+64)乙酸及适量水中,加热使之溶解,用水稀释至200mL。
氯化亚锡溶液(375g/L)称取37.5gSnCl2·2H2O溶于100mLHCl中。
混合液氯化亚锡溶液-500g/L酒石酸-浓盐酸-40g/L聚二烯醇(1+2+2+5)。
碲酸钠(5g/L)称取0.5gNa2TeO4加入5mLHCl及少量水溶解后稀释至100mL。
铼标准溶液ρ(Re)=50.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。然后配制铼含量为10.0μg/mL、1.0μg/mL、0.10μg/mL、0.050μg/mL、0.010μg/mL、0.005μg/mL、0.001μg/mL的系列。
酚酞指示剂(10g/L)乙醇溶液。
分析步骤
称取0.2~2g(精确至0.0001g)试样,置于预先铺有0.5~3.0gMgO的瓷坩埚中,充分搅匀,放入高温炉中逐渐升温到650℃,并在此温度下保持2h。取出冷却,用30~40mL热水将内容物移入150mL烧杯中,并洗净坩埚,加盖表面皿,在低温电热板上煮沸15~20min并保温至溶液清澈。取下稍冷,用中速滤纸过滤,用水洗烧杯及沉淀各3~4次,沉淀弃去。滤液收集在100mL烧杯中,在电热板上蒸发至5mL左右,将溶液移入50mL分液漏斗中(如有白色沉淀,可用小张滤纸或玻璃棉过滤除去),加入1滴酚酞,如溶液呈红色,则用(5+95)HCl调至红色恰好褪去,再加入2滴氢氧化钠溶液、1mL8-羟基喹啉溶液,混匀后放置5min。加入8mL三氯甲烷,剧烈振荡0.5min,待静置分层后,放出三氯甲烷。补加2滴氢氧化钠及0.5mL8-羟基喹啉,再加入8mL三氯甲烷,如此进行第二次和第三次萃取,然后再用5mL三氯甲烷萃取2次以除尽残留的8-羟基喹啉。各次有机相均弃去。将水相移入100mL烧杯中,分液漏斗用少量水洗2~3次,将合并的水溶液置低温电热板上蒸发至3~5mL,移入10mL容量瓶中,稀释至刻度,混匀(母液)。
吸取2.0mL母液4份,分别放入10mL比色管中,为A、B、C、D,另再取空白1份为E。再向B、C、D中分别加入相当于试液含铼量的0.7倍、1.4倍、2.1倍的铼标准溶液。向5支比色管中加水使溶液体积各为4.0mL,加入1mL混合液,混匀。放置使5支比色管中溶液的温度一致,分别加入1mL碲酸钠溶液并立即混匀。放置,待溶液出现适当的棕色即可于430~470nm处测量吸光度。测量时应严格控制每支比色管从加入碲酸钠起到比色读数的那一段时间间隔相一致。如室温较低,可置于45℃水浴上显色。
按下式计算试样中铼的含量:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:w(Re)为试样铼的质量分数,μg/g;mRe为试样中的铼量,μg;m为称取试样的质量,g;a、2a、3a为分别向比色管B、C、D中加入铼标准的质量,μg;A、A1、A2、A3、A0分别为比色管A、B、C、D、E溶液的比色读数。
加入铼标准的量(a)应与试样中铼量比例适当,此值可由该矿区的钼、铼比求得,也可吸取1mL母液作单份比色测定,求得铼的大致含量。
注意事项
铜、汞、锗、锡、铅、锑、铋、砷、钌、锇在100μg内无影响,钼及钨的干扰用酒石酸消除;钼对碲的还原亦有微弱的催化作用,可用硫化物分离后测定或用8-羟基喹啉-氯仿萃取分离钼。硝酸抑制反应,其他酸影响颜色强度,故采用标准加入法。
62.5.3.5 亚硫酸钠底液极谱法
方法提要
试样经氧化镁烧结,水提取,铼呈铼酸盐溶解于溶液中,而留在沉淀中的大部分共生元素分离。在6~10g/LNa2SO3溶液中,铼呈现良好的极谱波,半波电位为-1.59V(对饱和甘汞电极)。铼含量在0.2~4.0μg/mL之间,波高与浓度呈线性关系。
铬大于铼5倍时影响测定。本方法可以测定0.0001%以上的铼。
仪器
示波极谱仪。
试剂
氧化镁。
亚硫酸钠溶液(200g/L)。
铼标准储备溶液ρ(Re)=100.0μg/mL称取0.1000g高纯金属铼置于烧杯中,加入5mLHNO3,置于水浴中加热溶解,然后用5mLHCl逐HNO3,重复3次。蒸发至3mL左右,移入1000mL容量瓶中,用水稀释至刻度,摇匀。用时逐级稀释至所需要的浓度。
校准曲线
取6份烧结过的氧化镁(与试样同时进行),用20mL热水转入100mL烧杯中,分别加入含铼0μg、10μg、20μg、…、200μg的铼标准溶液,煮沸10min,冷却后移入已盛有20mLNa2SO3溶液的一组50mL容量瓶中,用水稀释至刻度,摇匀,放置澄清。分取部分上层清液,置于电解池中,起始电位为-1.3V,用示波极谱进行测定。绘制标准曲线。
分析步骤
称取0.1~2g(精确至0.0001g)试样,置于瓷坩埚中,加入2g粉状氧化镁,充分搅匀,再覆盖一层。置于高温炉中,逐渐升温到700℃烧结2h。取出冷却后,用20mL热水将烧结物移入100mL烧杯中,煮沸10min,以下操作同校准曲线。
铼含量的计算参见式(62.2)。
注意事项
在硫酸-硫酸钠底液中,有硫酸羟胺存在下,铼-碲催化体系既可以用来测定碲,同时可以测定微量铼。此外,在盐酸-二乙基二硫代氨基甲酸钠、硫酸-甲基醛-铜-碲、盐酸-硫氰酸钾-α-糠偶醛二肟等介质中,铼也能产生灵敏的催化波。有的体系灵敏度较高,检测下限能达到0.00xμg/mLRe。
62.5.3.6 硫酸-EDTA-聚乙烯醇-二苯胍底液催化极谱法
方法提要
试样经氧化镁烧结后,水提取,过滤。在硫酸-EDTA-聚乙烯醇底液中,加入适量二苯胍,可使铼的催化波大为提高,检出量可达0.001μg/mL。于电位-0.50V~-0.8V处,作导数极谱图。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(0.01~100)×106。
试剂
氧化镁。
硫酸。
聚乙烯醇溶液(1g/L)。
二苯胍溶液(1g/L)加1滴(1+1)H2SO4。
碲溶液ρ(Te)=10.0μg/mL称取0.2500g金属碲于50mL烧杯中,加10mLHNO3,在水浴上加热溶解,然后加5mLH2SO4,蒸发至3mL,冷却,用水移入250mL容量瓶并稀释至刻度,混匀。再用水稀释至要求浓度。
混合底液称取3g盐酸羟胺,0.6gEDTA,用水溶解后,加40mL(1+1)H2SO4,然后依次加入7.5mL碲溶液、4mL聚乙烯醇溶液、15g抗坏血酸、2mL二苯胍溶液,用水稀释至100mL,混匀。现用现配。
铼标准溶液ρ(Re)=0.50μg/mL配制方法见62.5.3.2环己酮萃取分离-α-糠偶酰二肟光度法。
仪器
极谱仪(带导数部分)。
校准曲线
取0.00mL、0.20mL、0.60mL、1.00mL、4.00mL、8.00mL、12.00mL、16.00mL铼标准溶液或0mL、0.20mL、0.60mL、1.00mL、2.00mL、4.00mL、6.00mL铼标准溶液,分别置于一组50mL烧杯中,置控温电热板上,加热蒸干,加入10.0mL混合底液微热溶解盐类,放置20min后,于极谱仪上,电位-0.5V~-0.8V处,作导数极谱图。绘制校准曲线。
分析步骤
根据试样中铼的含量,称取0.1~1g(精确至0.0001g)试样,置于已盛有2~3gMgO的瓷坩埚中,搅匀后再覆盖一层,置于高温炉中,逐渐升温至700℃,保持2h,取出冷却,置100mL烧杯中,加入30mL热水,加热煮沸5~10min。将溶液过滤于100mL烧杯中,用水洗烧杯和沉淀数次。滤液置控温电热板上加热蒸干,加入10.0mL混合底液微热溶解盐类,以下按校准曲线进行测定。
铼含量的计算参见式(62.2)。
注意事项
1)在烧结过程中,应稍开启炉门,以便充分氧化。
2)铼的催化波在4h内稳定性良好。碲量的多少影响铼催化波的波高,因此底液必须加准,10mL底液中含7.5μg碲为最佳量。二苯胍的加入能促使铼的催化波增高,加入量也应适当,过量反而使波高下降。
62.5.3.7 硫氰酸钾-α-糠偶酰二肟-盐酸底液催化极谱法
方法提要
试样经氧化镁烧结,热水浸取。在0.48mol/LHCl-3g/LSnCl2-0.5g/LKSCN-0.2g/Lα-糠偶酰二肟-!=0.008%丙酮体系中,铼在-0.93V处产生一灵敏的催化波,在0.1~0.8μg/mL铼浓度范围内,峰电流与浓度呈线性关系。本方法适用于稀有、有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(1~100)×10-6。
仪器
示波极谱仪。
试剂
氧化镁。
丙酮。
盐酸。
二氯化锡溶液(150g/L)溶于(1+4)HCl。
硫氰酸钾溶液(25g/L)。
α-糠偶酰二肟溶液0.5gα-糠偶酰二肟溶于100mL(5+95)乙醇溶液。
铼标准溶液ρ(Re)=10.0μg/mL称取0.1000g(精确至0.0001g)高纯金属铼于100mL烧杯中,加5mLHNO3,置水浴上溶解,加5~8mLHCl,赶去剩余的硝酸,重复3次,最后剩3mL左右,取下,用水移入1000mL容量瓶中并稀释至刻度,混匀。吸取20.00mL于200mL容量瓶中,用水稀释到刻度,混匀。
校准曲线
分取0mL、0.50mL、1.00mL、1.50mL、2.00mL、3.00mL、5.00mL铼标准溶液,分别置于一组25mL容量瓶中,用水稀释至10mL左右,加入2mL(1+1)HCl、0.5mLSnCl2溶液、0.5mLKSCN溶液、1mLα-糠偶酰二肟溶液、4滴丙酮,用水稀释至刻度,混匀。将溶液倒入电解池中,用示波极谱仪导数部分,-0.93V处测量峰电流,绘制校准曲线。
分析步骤
称取0.5~2g(精确至0.0001g)试样,置于预先盛有3~5gMgO的瓷坩埚中,充分搅匀,表面再覆盖一层,置高温炉中,从低温逐渐升至700℃并保持2h,取出冷却。将烧结物移入100mL烧杯中,用40mL热水浸取并煮沸3~5min,冷却。移入50mL容量瓶中,用水稀释至刻度,混匀,放置澄清。
分取5.0~10.0mL清液于25mL容量瓶中,加入2mL(1+1)HCl,以下按校准曲线进行测定。
铼含量的计算参见式(62.1)。
注意事项
1)在烧结过程中,应稍开启炉门,以便充分氧化。
2)每加一种试剂均须混匀,低价铼只有在低酸度介质中与α-糠偶酰二肟、硫氰酸盐形成电活性配合物,可允许一定量EDTA、酒石酸、草酸等存在。
62.5.3.8 电感耦合等离子体质谱法
方法提要
采用氧化镁半熔法、过氧化钠熔融-丙酮萃取法或硝酸分解法处理试样,等离子体质谱法测定铼。一般ICP-MS的仪器检出限为0.001ng/mL,根据各种前处理方法的稀释倍数,并考虑到基体、空白等因素,对试样的测定限为w(Re):(0.2~2)×10-6。
仪器
等离子体质谱仪。
试剂
氧化镁。
过氧化钠。
丙酮。
硝酸。
过氧化氢。
氢氧化钠溶液(250g/L)。
铼标准储备溶液ρ(Re)=100.0μg/mL称取0.14406g高纯铼酸铵(NH4ReO4)置于烧杯内,溶于水中,移入1000mL容量瓶内,用水稀释至刻度,摇匀。
铼标准溶液ρ(Re)=20.0ng/mL由铼标准溶液稀释配制。
铱内标溶液ρ(Ir)=20.0ng/mL。
分析步骤
(1)试样处理
a.氧化镁半熔法。称取0.5g(精确至0.0001g)试样置于瓷坩埚中,加入1.5gMgO,搅拌均匀,再覆盖0.5g,放入高温炉,逐渐升温至700℃,焙烧时炉门开一缝,使加入空气以促进铼的氧化。保持1h后,取出冷却,将坩埚内半熔物转入150mL烧杯中,用50mL热水浸取。煮沸1h,冷却。转入50mL容量瓶,用水稀释至刻度,摇匀,放置。取上清液干过滤后上机测定。
b.过氧化钠熔融-丙酮萃取法。称取0.5g(精确至0.0001g)试样,置于高铝坩埚中,加入3gNa2O2,搅匀,再覆盖一层,置于高温炉中,在700℃熔融10min,取出冷却,将坩埚置于烧杯中,加30mL热水提取,洗出坩埚,冷却后将碱性试样溶液和沉淀一并转入120mLTeflon分液漏斗中,补加氢氧化钠溶液至浓度约为5mol/L。加入10mL丙酮萃取Re,振荡1min,静止分层(如沉淀太多,需多加氢氧化钠溶液,转入50mL离心管离心,将上清液转入分液漏斗进行分相)。弃去下层水相和沉淀,加2mLNaOH溶液到分液漏斗中。振荡1min,进一步洗去丙酮相中的杂质,弃去下层水相。将丙酮相转入50mL离心管中,离心10min,用滴管取出上部丙酮到已加有2mL水的100mLTeflon烧杯中(这一次离心是为了保证丙酮相不会夹杂碱液,防止以后溶液含盐量过高而导致雾化器堵塞)。在电热板上加热,开始保持约50℃,待丙酮蒸发完后,升高电热板温度到120℃,继续加热溶液至干。用0.5mLHNO3中和溶解残渣。有时HNO3提取液呈黄色,可能是丙酮的降解产物,反复加热近干并滴加H2O2和HNO3,可使溶液清亮无色,最终转入10mL比色管,用水稀释至刻度,摇匀,待上机测定。
c.硝酸分解法(适用于硫化矿物)。称取10~50mg试样,置于小烧杯中,加入5~10mLHNO3,盖上表面皿,于低温电热板加热至沸腾。继续加热至试样逐渐形成白色钼酸沉淀。去盖,继续加热至仅余约0.5mL溶液,加少量水加热,转入10mL比色管,用水稀释至刻度,摇匀。放置澄清后取上清液上机沉淀。
(2)上机测定
选用常规的ICP-MS工作参数继续测定。
测定同位素为185Re,内标为193Ir。以高纯水为低点、铼标准溶液为高点进行仪器校准,然后测定试样溶液。内标溶液在测定空白溶液、标准溶液和试样溶液时由三通导入ICP仪器。
注意事项
1)半熔法在焙烧过程中铼可能有少量挥发损失,结果略偏低,含量很低时可能偏低约10%。
2)半熔法处理试样不可选用187Re作为测定同位素,因为含铼试样中往往含有由铼衰变产生的放射性187Os,会对187Re的测定形成干扰。另两种处理方法因锇已被分离,不存在此问题。
3)用丙酮萃取铼的问题。丙酮与水混溶,当氢氧化钠浓度大于2mol/L时,丙酮与碱溶液分成两相。5mol/LNaOH时分相界面清晰。在碱性介质中大部分金属氢氧化物沉淀而得到分离。试样基体中的Mo、Fe、Ni、Cu、As等元素基本不被萃取。在当前所有Re的溶剂萃取方法中丙酮萃取方法较为简单快速并具有广泛的适用性。只需做一次萃取,不用反萃步骤,就可以把铼从辉钼矿、橄榄岩、玄武岩、黑色页岩、油页岩、黄铁矿、黄铜矿、铬铁矿、毒砂等基体中快速分离。
参 考 文 献
邓桂春,滕洪辉,刘国杰,等 . 2004. 铼的分离与分析研究进展 [J]. 稀有金属,28 ( 4) : 771 -776
邓桂春,臧树良,王永春,等 . 2000. 乙基紫萃取光度法测定铜烟灰中的铼 [J]. 分析化学,28( 8) : 1051
刘峙嵘 . 1997. 高铼酸盐 - 氨氯吡咪盐酸盐萃取光度法测定铼 [J]. 四川有色金属,( 2) : 65 -66
王靖芳,冯彦琳,李慧妍 . 1995. N,N - 二 ( 1 - 甲基庚) 乙酰胺萃取铼的研究 [J]. 稀有金属,19( 3) : 228
王清芳,罗锦超,冯彦琳,等 . 2001. N7301 萃取铼的研究 [J]. 有色金属 ( 冶炼部分) ,29
王顺昌,齐守智 . 2001. 铼的资源、用途和市场 [J]. 世界有色金属,( 2) : 12 -14
王献科,李玉萍,李莉芬 . 2000. 液膜分离富集测定铼 [J]. 中国钼业,24 ( 4) : 38 -41
王小琳,刘亦农,熊宗华 . 1995. 酮类试剂萃取分离铼的研究 [J]. 化学试剂,17 ( 3) : 143 -145
杨子超,王秀山,李运涛,等 . 1988. 氯化三烷基苄基铵萃取分离铼钼的研究 [J]. 西北大学学报,18( 3) : 46 -49
周迎春,刘兴江,冯世红,等 . 2003. 活性炭吸附法分离铼钼的研究 [J]. 表面技术,32 ( 4) : 31
周稚仙,杨俊英 . 1987. 苯并 -15 - 冠 -5 萃取分离铼的研究 [J]. 化学试剂,9 ( 1) : 50
经纬度是如何确定的?
经度和纬度的确定方法:在地球表面中部每一点到南北两极的距离都相等的大圆圈叫赤道,定为纬度零度。球面和赤道平行的圆圈称为纬线,南北纬各为90度。经线是北极到南极在地球表面的连线,以经过格林尼治天文台的经线为0度,东西经各180度。纬线和经线一样是人类为度量方便而假设出来的辅助线,定义为地球...
定价决策的基本方法有
定价决策的基本方法定价决策是商业决策中的重要部分,它直接影响到企业的利润和市场份额。以下是一些基本的定价方法:1. 成本加成法:这种方法是在估计所有生产及分销成本的基础上,加上预期利润作为售价。2. 目标利润法:企业根据自身财务目标,如期望的利润率,来确定产品的价格。3. 市场导向定价法:这种...
行走怎么入定
观心念+睡眠定,最简单的入定方法 由于气脉不通,盘腿静坐有不舒适感,导致不能忘身,所以我一直都是睡眠定的方式。分享一些自己入睡眠定的心得和方法,其实是特别简单的过程,自己每天都在这样经历。可是发现一但是写出来,却不知道怎么表达才能更明确,这是不爱读书的弊端。而且想着分享出去,看文章的...
如何给商品定价?怎么用公式算。
定价分类:可以归纳为成本导向、需求导向和竞争导向三类。成本导向定价法:以营销产品的成本为主要依据制定价格的方法统称为成本导向定价法,这是最简单、应用相当广泛的一种定价方法。总成本定价法:成本加成,目标利润:成本加成定价法(cost-plus pricing),即按产品单位成本加上一定比例的毛利定出销售价。
点检定修制的定义
1、设备点检管理的基本原则:定点、定标准、定人、定周期、定方法、定量、定业务流程、定点检要求。2、设备的五层防护线:又称五层设防,就是把岗位日常点检、专业定期点检、专业精密点检、技术诊断和倾向管理、精度性能测试检查等结合起来,以保证设备安全、稳定、经济运行的防护体系。3、五大要素:点检...
定量的方法是什么
问题一:定量方法是什么意思 定量方法一般指定量研究方法 定量研究一般是为了对特定研究对象的总体得出统计结果而进行的。定性研究具有探索性、诊断性和预测性等特点,它并不追求精确的结论,而只是了解问题之所在,摸清情况,得出感性认识。定性研究的主要方法包括: 与几个人面谈的小组访问,要求详细回答的深度访问,以及各种...
人物推定法的优缺点
指教师指导学生借助 于问卷的方式进行相互评议的一种评 定方法。人物推定法是现代教育评价中受到重视的一种新技术,有较高的信度和效度。但它适用的年级范围有限制,如小学一二年级学生判断力差,不宜采用。另外,一般只能在固定班级实施,不宜用来测验全校或全年级学生。
如何确定四点共面?
第一种方法:任取这4点中2点做一条直线,证明做出的2条直线相交、平行、或重合即可。第二种方法:任取4点中3点做一个平面,再证明此平面经过这个点。第三种方法:若其中有3点共线,则此4点一定共面。(过直线与直线外一点有且仅有一个平面)如果已知4点坐标,可以用向量法、点到平面距离为0法...
中极怎么定4寸
中极穴就在肚脐下四横指再往下一寸的位置,其有关内容如下:1、中极穴的定位方法是以患者自身的手指宽度为标准来测量的,一般来说,中指靠近手掌的指间关节的宽度可以作为一寸,以此为基础,再往下一寸的位置就是中极穴的位置。在刺激中极穴时,可以采用按摩、针灸、艾灸等多种方法。2、中极穴的...
定价决策的基本方法有
定价决策的基本方法有如下:主要的定价方法有成本导向定价法、市场导向定价法、顾客导向定价法 ;主要的定价策略有价格讯号、渗透定价、地区定价、形象定价、组合定价、互补定价。定价策略是市场营销组合中一个十分关键的组成部分。价格通常是影响交易成败的重要因素,同时又是市场营销组合中最难以确定的因素。...