0是不是所有自然数的倍数
是的。0是所有非零自然数的倍数。
倍数的含义:一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
若整数b除以非零整数a,商为整数,且余数为零, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。
扩展资料
一些数字倍数的特征:
2的倍数
一个数的末尾是偶数(0,2,4,6,8),这个数就是2的倍数。
3的倍数
一个数的各位数之和是3的倍数,这个数就是3的倍数。
4的倍数
一个数的末两位是4的倍数,这个数就是4的倍数。
5的倍数
一个数的末尾是0或5,这个数就是5的倍数。
6的倍数
一个数只要能同时被2和3整除,那么这个数就能被6整除。
不是。0也是自然数,但是0÷0没有意义,所以0不能被0整除,因此【0是任何自然数的倍数】这句话错了。
求采纳,谢谢~
0不是自然数的倍数
额 这个应该是把
不是的。
随着九年义务教育小学数学教材(试用修订版),把0划归自然数后,一些数的概念是否发生变化,引起小学了数学教师的关注。无论是在日常的教研活动,还是教师私下交流,或是因特网上的教育论坛,都有许多教师提出疑问,引发了大家的思考。
思考之一:为什么要把0划归自然数
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93 begin_of_the_skype_highlighting 3100-3102-93 end_of_the_skype_highlighting)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
思考之二:最小的一位数是“1”还是“0”?
0是最小的自然数,那么最小的一位数是“1”还是“0”?在0没有归入自然数以前大家都很清楚,最小的一位数是1。那么,现在0也成为自然数了,最小的一位数还是1吗?这是许多教师提出的疑问,笔者认为最小的一位数还是1。
因为,0表示一个物体也没有,在记数法中是表示空位的一个符号,如3005里“0”就分别表示这个数的十位、百位、都是空位。这次调整虽然将“0”划归自然数,然而对几位数的概念并没改变。关于“几位数”是这样定义的“只用一个有效数字表示的数,叫做一位数,只用两个有效数字,其中左边第一个数字是有效数字来表示的数就叫做两位数……”假设0也算作一位数的话,那么最小的两位数是“10”还是“00”呢?那么最小的三位数、四位数……又是多少呢?
《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”是这样叙述的:“通常在自然数里,含有几个数位的数,叫做几位数。例如,2,含有一个数位的数,叫做一位数;30含有两个数位的数,叫做两位数;405含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。
所谓最大的几位数,最小的几位数,通常也是在非零自然数有范围来说。所以,最大一位数是9,最小一位数是1;最大两位数是99,最小两位数是10;最大三位数是999,最小三位数是100……”
综上所述,“0”虽然是最小的自然数,但仍然不能称为“一位数”,更不能称为最小的一位数。
思考之三:自然数的计数单位还是“1”吗?
大家都知道,0是自然数中最小的一个。0加1得1,1加1得2 ,2加1得3,……这样继续下去可以得到任意一个自然数。而从自然数的排列顺序可知,后面一个自然数比前面一个自然数多1。因此,任何一个自然数都是由若干个1合并而成,所以1是自然数的单位。0可以看成是由0个1组成的自然数。
思考之四:0是其它非零自然数的倍数吗?
《九年义务教育六年制小学数学》第十册中,关于“数的整除”及“约数和倍数”的定义并未做任何改变,教材第54页就有这样的叙述:“因为0也能被2整除,所以0也是偶数”。以此类推,0能被所有非零自然数整除,根据约数倍数的定义,0是任何非零自然数的倍数,任何非零自然数都是0的约数。但考虑到研究分解质因数、最大公约数、最小公倍数时,一般限于非零自然数范围内,如讲最小公倍数时,是把0排除在外的。为此,《九年义务教育六年制小学数学》第十册50页明确指出:“为了方便,以后在研究约数和倍数时,我们所说的数一般不包括0”。这样就避免了一些不必要的麻烦。但过去的一些说法就必须加以纠正了。例如:“一个自然数的最小倍数是它本身”、“自然数的约数的个数是有限的”等,这样的结论必须纠正。
思考之五:0是不是合数?
过去,在教学中,关于自然数的组成,有两种情况:一是所有奇数和所有的偶数组成自然数集合;二是所有的质数与所有的合数及1也组成自然数集合。现在0也成为了自然数集合的一员,因而有许多教师提出这样的问题:0是不是合数?
前面已经谈过了,以后“在研究约数和倍数时,我们所说的数一般不包括0”,但作为一种学术研究,进行探讨也未尝不可。笔者以为,0的约数有无数个,根据《九年义务教育六年制小学数学》第十册中关于合数的定义:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。”似乎应该把0划归为合数范围,但仔细一想0是个特殊的自然数,因为所有非零自然数都有“本身”这个约数,如,1是1的约数,2也是2的约数……,而0这个自然数恰恰少了“本身”这个约数,因此,也不能归为合数。试想:假设如果0是合数,那么它能用质因数相乘的形式表现出来吗?这就与“每个合数都可以写成几个质数相乘的形式”产生了矛盾。所以,我主张把0划归为“既不质数,也不是合数”范围。当然了,这需要权威机构和专家们的认定。但我认为,目前在没有明确0是不是合数的情况下,还是以回避为好。
思考之六:“任何相邻的两个自然数是互质数”对吗?
0没有成为自然数时,这一结论毫无疑问是正确的。现在0也是自然数,我们只要研究“0和1”这两个相邻的自然数是不是质数,就行了。根据《九年义务教育六年制小学数学》第十册中关于互质数的定义:“公约数只有1的两个数,叫做互质数。”笔者认为,0的约数有无数个,而1的约数只有一个,那就是它本身。综上所述,0和1的公约数只有“1”,因此,0和1是互质数。自然,“任何相邻的两个自然数是互质数”这个结论也是正确的。
所有的自然数都是几的倍数?
所有的自然数都是1的倍数。倍数:1、一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。2、一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。3、数的倍数有无数个,也就是...
所有的自然数都是一的倍数是对还是错
所有的自然数都是一的倍数是对的 解析:自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,除了零以外,其他所有自然数是1的倍数是显而易见的;而0这个数字,应能被1整除,即0除以1等于0,所以0是1的倍数,所以所有的自然数都是一的倍数。
0是不是所有自然数的倍数
0不是任何一个数的倍数,也不是任何一个数的因数
什么数是所有自然数的倍数
(0)是所有自然数的倍数 任何数乘上0,都得0.【润无声】为你解答。祝你学习进步!有疑问欢迎追问,有帮助请采纳。谢谢!
零是所有自然数的倍数吗?
零是所有自然数的倍数。正确。
1和3的所有倍数是什么数
所有自然数是1的倍数,所有能被3整除的自然数是3的倍数。3的倍数有无数个,比如3、6、9、12、15、18等。1和3的最小公倍数为3。一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。不能把一个数单独叫做倍数,只能说一个数是另一个数的倍数。一个数的倍数有无数个,也就是说一个...
0能被所有正整数整除,那能说0为所有自然数的倍数吗
不能。0是自然数,但是在小学研究约数和倍数时不包括0,这就是说0没有在约数和倍数范围之内。所以谈不上0是谁的倍数。因此0是任何自然数的倍数这句话是错的。倍数定义:一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。
任何自然数都是1的倍数吗,这句话对吗?0是不是1的倍数?
一、 1 是任何整数的约数,即任何整数(包括自然数)都是1的倍数。二、现在的教材在研究倍数因数时都把0除外。所以0不在倍数的讨论范围之内。
0是任何非零自然数的倍数吗
是的。0是所有非零自然数的倍数。倍数的含义:一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。若整数b除以非零整数a,商为整数,且余数为零,我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是...
1是任何自然数的倍数,对吗
不对!应该是因数