面积怎么求?周长怎么求?
长方形周长=(长+宽)×2 C=2(a+b)
正方形周长=边长×4 C=4a
圆的周长=圆周率×直径 C= πd C=2πr
半圆的周长=圆周长的一半+直径 C=πr+d
面积公式:
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形面积=底×高 S=ah
三角形面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底 h=s2÷a
三角形底=面积×2÷高 b=s2÷h
梯形面积=(上底+下底)×高÷2 S=(a+b)÷2
梯形的高=面积×2÷(上底+下底) h=s×2÷(+b)
梯形的(上底+下底)=面积×2÷高 (a+b)=s×2÷h
梯形的(上底+下底)=面积×2÷高-下底 a=s×2÷h-b
圆的面积=圆周率×半径的平方 S=πr2
圆柱的侧面积=底面周长×高 S=ch
表面积公式:
长方形表面积=(长宽+长高+宽高)2 S=(ab+ah+bh)×2
正方体表面积=边长×边长×6 S=6a2
圆柱体侧面积=底面周长×高 S=ch
圆柱体表面积=侧面积+底面积×2 S=s侧+2s底
体积公式:
长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a3
圆柱体体积=底面积×高 V=sh
(将近似长方体平方得到:
圆柱体体积=侧面积的一半×半径 V=ch÷2×r=2πr÷2×r
圆锥体体积=底面积×高÷3 V=sh÷3或1/3
关系式:
分数应用题:
单住“1”的量×分率(百分率)=对应量
已知量÷对应分率(百分率)=单位“1”的量
比较量÷单位“1”的量=分率(百分率)
工程问题:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
相遇问题:
速度和×相遇时间=路程
路程÷速度和=相遇时间
路程÷相遇时间=速度和
归一问题:
单一量×数量=总量
总量÷单一量=数量
总量÷数量=单一量
比例尺:
图上距离:实际距离=比例尺
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
平均数:
总数÷总份数=平均数
正比例关系:
y=k(一定) 反比例:xy=k(一定)
一般运算规则:
(1)加数+加数=和
(2)一个加数=和-另一个加数 和-一个加数=另一个加数
(3)被减数-减数=差
(4)减数=被减数-差
(5)被减数=减数+差
(6)因数×因数=积
(7)一个因数=积÷另一个因数
(8)被除数÷除数=商
(9)除数=被除数÷商
(10)被除数=商×除数
(11)有余数的除法:被除数=商×除数+余数
(12)每份数×份数=总数
(13)总数÷每份数=份数
(14)总数÷份数=每份数
(15)1倍数×倍数=几倍数
(16)几倍数÷1倍数=倍数
(17)几倍数÷倍数=1倍数
(18)速度×时间=路程
(19)路程÷时间=速度
(20)路程÷速度=时间
(21)单价×数量=总量
(22)总价÷单价=数量
(23)总价÷数量=单价
单 位 换 算
长度单位
1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
面积单位
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分=100平方厘米
1平方厘米=100平方毫米
体(溶)积单位
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位
1吨=1000 千克
1千克=1000克
1千克=1公斤
1公斤=2市斤
1斤=500克
人民币换直
1元=10角
1角=10分
1元=100分
时间换算
1世纪=100年
1年=12月
大月(31天)有1/3/5/7/8/10/12月
小月(30天)有4/6/9/11月
平年2月28天,润年2月29天
平均全年365天,润年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
数 学 定 义 、定 理
1、加法交换律:
两数相加交换加数的位置.和不变.
2、加法结合律:
三个数相加.先把前两个数相加.或先把后两个数相加,再同第三个数相加.和不变.
3、乘法交换律:
两数相乘,交换因数的位置.积不变.
4、乘法结合律
三个数相乘先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5、乘法分配律
两个数的和同一个数相乘,可以把两个加数分别同这处数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6、除法的性质
在除法里被除数和除数同时扩大(或缩小)相同的倍数.商不变.0除以任何不是0的数都得0.
7、等式
等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:
等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8、方程式
含的未知数的等式叫方程式
9、一元一次方程式
含有一个未知数.并且未数的次数是一次的等式叫做一元一次方程式.
10、分数
把单位”1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
11、分数的加、减法则
同分线母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分然后再加减。
12、分数大小的比较
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较。若分子相同,分母大的反而小。
13、分数乘整数
用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数
用分子相乘的积作分子,分母相乘的积作分母。
15分数除以整数(0除外)
等于分数乘以这个整数的倒数。
16、真分数
分子比分母小的数叫做真分数。
17、假分数
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于或等于1。
18、带分数
把假分数写成整数和真分数的形式叫做带分数。
19、分数的基本性质
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外)等于甲数乘以乙数的倒数。
数 量 关 系 计 算 公 式
1、比
两个数相除就叫做两个数的比
如:2÷5或3:6或1/3。比的前项和后项同时乘以或除以一个相同的数。(0除外)比值不变。
2、比例
(1)定义
表示两个比相等的式子叫做比例。
如:3:6=9:18
(2)基本性质
在比例里,两外项之积等于两内项之积。
(3)解比例
求比例中的未知项叫做解比例。
如:3:x=9:18
(4)正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的比值(也就是商K)一定。这两种量就叫做成正比的量,它们的关系就叫做正比例关系。
如:y/k=k(k一定) kx=y
(5)反比例
两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的积一定。这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:xy=k(k一定)或k/x=y
(6)百分数
表示一胩数或另一个数的百分之几的数叫做百分数,百分数也叫做百分率或百分比。
3、小数、分数、百分数
(1)把小数化成百分数,只要把小数点向后移动两位,同时后面添上百分号,其实,把小数化成百分数,只要把这个数乘以100%就行了。
(2)把分数化百分数,通常先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数,其实,把分数化成百分数,要先先把分数化成小数后,再乘以100%就行了。
(3)把分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(4)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、最大公约数
几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数,(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个叫做最大公约数)
5、互质数
公约数只有1的两个数,叫做互质数 。
6、最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
7、通分
把异分母分数的分别化成和原来分数相等的同分母的分数。叫做通分(通分用最小公位数)
8、约分
把一个分数化成同它相等,但分子、分母都比较小的分数叫做约分(约分用量大公位数)
9、最简分数
分子、分母是互质数的分数叫做最简分数
(1)分数计算到最后,得数必须成最简分数。
(2)个位上是0、2、4、6、8的数,都能被2整除。即能用2进行约分。
(3)个位上是0或5的数,都能被5整除,即能用5通分。
(4)每个数位上的数字的和是3的倍数。即能用3进行通分。
10、偶数和奇数
能被2整除的数叫偶数,不能被2整除的数叫奇数。
11、质数(素数)
一个数(如11),如果只有1和它本身(11)两个因数。这样的数就叫做质数(或素数)
12、合数
一个数(如12),如果除了1和它本身(12)外,还的别的因数,这样的数叫做合数,1不是质数,也不是合数。
13、利息
利息=本金利率时间(时间一般以或月为单位,应与利率的单位相对应)
14、利率
利息与本金的比值叫做利率,一年的利息与本金铁比值叫做年利率,一月的利息与本金的比值叫做月利率。
15、自然数
用来表示物体个数的整数,叫做自然数。也可分为质数和偶数。0也是自然数。
一个数的个位上是1、3、5、7或9,这个数是奇数。20以内的质数是2、3、5、7、9、11、13、17、19。
一个数个位上是0、2、4、6、或8,这个数是偶数。
16、循环小数
一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如:3.141414
17、不循环小数
一个小数,从小数部分起,没有一个数字或几个数字依次不断重复出现,这样的小数叫做不循小数。
如:3.141592654
18、无限不循环小数
一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断和重复出现,这样的小数叫做无限不循环小数.
如:3.141592654......
19、代数
就是用字母代替数.
20、代数式
用字母表示的式子中做代数式.
如:3x=ab+c
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数1+加数2=和 和-加数1=加数2 和-加数2=加数1
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数1×因数2=积 积÷因数1=因数2 积÷因数2=因数1
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 (C周长 S面积 a边长)
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 正方体(V体积 a棱长)
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 长方形(C周长 S面积 a边长)
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 长方体(V体积 S面积 a长 b宽 h高)
(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形(s面积 a底 h高)
面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底 三角形底=面积×2÷高
6 平行四边形(s面积 a底 h高)
面积=底×高 s=ah
7 梯形(s面积 a上底 b下底 h高)
面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形(S面积 C周长 π圆周率 d=直径 r=半径)
(1)周长=直径×π=2×π×半径 C=πd=2πr
(2)面积=半径×半径×π
9 圆柱体(v体积 h高 s底面积 r底面半径 c底面周长)
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体(v体积 h高 s底面积 r底面半径)
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
周长公式:
长方形周长=(长+宽)×2 C=2(a+b)
正方形周长=边长×4 C=4a
圆的周长=圆周率×直径 C= πd C=2πr
半圆的周长=圆周长的一半+直径 C=πr+d
面积公式:
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形面积=底×高 S=ah
三角形面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底 h=s2÷a
三角形底=面积×2÷高 b=s2÷h
梯形面积=(上底+下底)×高÷2 S=(a+b)÷2
梯形的高=面积×2÷(上底+下底) h=s×2÷(+b)
梯形的(上底+下底)=面积×2÷高 (a+b)=s×2÷h
梯形的(上底+下底)=面积×2÷高-下底 a=s×2÷h-b
圆的面积=圆周率×半径的平方 S=πr2
圆柱的侧面积=底面周长×高 S=ch
表面积公式:
长方形表面积=(长宽+长高+宽高)2 S=(ab+ah+bh)×2
正方体表面积=边长×边长×6 S=6a2
圆柱体侧面积=底面周长×高 S=ch
圆柱体表面积=侧面积+底面积×2 S=s侧+2s底
体积公式:
长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a3
圆柱体体积=底面积×高 V=sh
(将近似长方体平方得到:
圆柱体体积=侧面积的一半×半径 V=ch÷2×r=2πr÷2×r
圆锥体体积=底面积×高÷3 V=sh÷3或1/3
关系式:
分数应用题:
单住“1”的量×分率(百分率)=对应量
已知量÷对应分率(百分率)=单位“1”的量
比较量÷单位“1”的量=分率(百分率)
工程问题:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
相遇问题:
速度和×相遇时间=路程
路程÷速度和=相遇时间
路程÷相遇时间=速度和
1、长方形、正方形的周长和面积公式:
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a·a= a²
2、三角形、平行四边形、梯形的面积公式:
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
3、圆的周长和面积公式:
圆的周长=直径×π
公式:L=πd=2πr
圆的面积=半径×半径×π
公式:S=πr²
4、圆柱的侧面积和表面积公式:
圆柱的侧面积:
圆柱的侧面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
圆柱的表面积:
圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr²
怎么求圆的周长与面积?
圆的面积:S=πr²=πd²\/4 扇形弧长:L=圆心角(弧度制) * r = n°πr\/180°(n为圆心角)扇形面积:S=nπ r²\/360=Lr\/2(L为扇形的弧长)圆的直径: d=2r 圆锥侧面积: S=πrl(l为母线长)圆锥底面半径: r=n°\/360°L(L为母线长)(r为底面半径)1、...
面积怎么求?周长怎么求?
半圆的周长=圆周长的一半+直径 C=πr+d面积公式: 长方形面积=长×宽 S=ab 正方形面积=边长×边长 S=a2 平行四边形面积=底×高 S=ah 三角形面积=底×高÷2 S=ah÷2 三角形高=面积×2÷底 h=s2÷a 三角形底=面积×2÷高 b=s2÷h 梯形面积=(上底+下底)×高÷2 S=(a+b)÷2 梯形的高=面...
圆环的周长和面积怎么求?
圆中的环形是半径不相等且是同心圆的环绕型图形。圆环的对称性非常强,是一个以圆心为对称中心的中心对称图形,也是有无数条对称轴的轴对称图形。圆环的几何中心就是圆心。一个以圆心为中心,半径为内外半径的几何平均值的反演保持圆环整体不变,将内外边缘互换,内圆内部与外圆外部互换。圆环周长:外圆...
十六边形的周长、面积和体积怎么求
周长:十六边形的周长等于所有边长之和,因为每条边长度相等,所以可以用以下公式计算:周长 = 16 × 边长 面积:将十六边形分成 16 个三角形,每个三角形的面积可以通过以下公式计算:三角形面积 = (1\/2) × 底边长度 × 高 由于所有三角形底边长度相同且高也相同,所以可得到以下公式:总面积 = ...
六年级的圆的面积和周长怎么求?
六年级圆的周长和面积公式如下:六年级数学课程学习了圆的周长和面积的计算方法。对于圆的周长,其公式有两种表达形式:C=πd或者C=2πr。其中,C代表圆的周长,d表示圆的直径,而r则代表圆的半径。例如,如果有一个直径为8m的圆形水池,并打算在距水池6m外的地方筑起一圈围栏,那么首先需要计算出...
面积怎么求周长?
已知周长求面积的算法如下:1、长方形的周长=(长+宽)×2=(a+b)×2。2、正方形的周长=边长×4=4a。3、长方形的面积=长×宽=ab。4、正方形的面积=边长×边长=a.a=a ²。5、三角形的面积=底×高÷2=ah÷2。6、平行四边形的面积=底×高S=ah。7、梯形的面积=(...
请问多边形的面积和周长怎样求?
多边形的面积和周长的计算方法取决于多边形的具体类型。以下是不同类型多边形的面积和周长公式:1. 矩形:- 面积:面积 = 长 × 宽 (S = l × w)- 周长:周长 = 2 × (长 + 宽) (C = 2 × (l + w))2. 正方形:- 面积:面积 = 边长 × 边长 (S = a × a = a²)- ...
圆的面积求周长怎么求
圆的面积求周长的计算公式如下:圆的面积计算公式为:S=π×r2=3.1416×r2 圆周长计算公式为:L=2×π×r 根据圆的面积计算公式S=πr2,可以得知当圆的面积一定时,圆的半径r的大小也就确定了。既然圆的周长L=2πr,那么在已知圆的面积的情况下,我们就可以通过计算r的值进而求出圆的周长。...
圆的周长怎么求 面积怎么求
S=πr²其中S为圆的面积,π是圆周率取3.14,r为圆的半径。用周长求面积 r=C\/(2π)S=πr²=π[C\/(2π)] 2 其中S为圆的面积,C为圆的周长,π是圆周率取3.14,r为圆的半径,d为圆的直径。用面积求周长 r=√(S÷π)C=2πr=2π*[√(S÷π)]其中S为...
小学图形面积和周长公式?
正方形的面积等于边长的平方 长方形的面积等于长与宽的乘积 平行四边形的面积等于底边与底边上的高的乘积 梯形的面积等于上下底的和与高的乘积的一半 圆的面积等于等于半径的平方与圆周率的乘积也等于直径的平方与圆周率的乘积的四分之一。