谁能帮我设计一个C语言程序,求解方程组的,急啊,哪位高手帮下咯,万分感谢
第一张:
#include
char a[]
a
i<n/2
=a[n-i-1]
第二张:
答案:7 6 5 4 3 2 1
PicPanel=new JPanel();
PicPanel.setPreferredSize(new Dimension(50,50));
在使用FLOWLayout布局的情况下若想改变组件的大小,setSize()是无效的,得用setPreferredSize(new Dimension(width,height));
float *GauseSeidel(float *a,int n)
是高斯赛德尔法求解线性方程组的通用子程序。
N 是 迭代次数极限。
main()里写了调用的例子。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 100
float *GauseSeidel(float *a,int n)
{
int i,j,nu=0;
float *x,dx;
x=(float *)malloc(n*sizeof(float));
for(i=0;i<=n-1;i++)
x[i]=0.0;
do {
for(i=0;i<=n-1;i++) {
float d=0.0;
for(j=0;j<=n-1;j++)
d+=*(a+i*(n+1)+j)*x[j];
dx=(*(a+i*(n+1)+n)-d)/(*(a+i*(n+1)+i));
x[i]+=dx;
}
if(nu>=N)
{
printf("iter divergence\n");
exit(1);
}
nu++;
}
while(fabs(dx)>1e-6);
return x;
}
void main()
{
int i;
float *x;
float c[12]={5,2,1,8,2,8,-3,21,1,-3,-6,1};
float *GauseSeidel(float *,int);
x=GauseSeidel(c,3);
for(i=0;i<=2;i++)
printf("x[%d]=%f\n",i,x[i]);
getch();
}
解方程组有好几种方法:
一:高斯消去法,
程序段:
#define N 3
#include <iostream.h>
#include <math.h>
void main()
{
double a[N][N+1] = {0.101,2.304,3.555,1.183,
-1.347,3.712,4.623,2.137,
-2.835,1.072,5.643,3.035}; //增广矩阵
double x[N]; //存储解向量
double m; // 中间变量
int i, j, k;
//消元过程
for(k=0;k<N-1;k++){ // k<N-1 ?
if(a[k][k]==0) {
cout << "求解失败!";
break;
}
for(i=k+1;i<N;i++){
m = a[i][k] / a[k][k];
a[i][k] = 0;
for(j=k+1;j<=N;j++) // j<=N?
a[i][j] = a[i][j] - a[k][j] * m;
}
}
// 回代过程
x[N-1] = a[N-1][N] / a[N-1][N-1];
for(k=N-2;k>=0;k--){
for(j=k+1;j<N;j++){
a[k][N] = a[k][N] - a[k][j] * x[j];
}
x[k] = a[k][N] / a[k][k];
}
// 输出结果
for(k=0;k<N;k++)
cout << x[k]<<endl;
}
二:列主元高斯消去算法,
程序段:
#define N 3
#include <iostream.h>
#include <math.h>
void main()
{
double a[N][N+1] = {0.101,2.304,3.555,1.183,
-1.347,3.712,4.623,2.137,
-2.835,1.072,5.643,3.035}; //增广矩阵
double x[N]; //存储解向量
double m; // 中间变量
int i, j, k,s;
//消元过程
for(k=0;k<N-1;k++)
{ // k<N-1 ?
s=k;
for(i=k+1;i<N;i++)
{
if(fabs(a[s][k])<fabs(a[i][k]))
s=i;
}
if(s!=k)
{
for(j=0;j<=N;j++)
{
m=a[k][j];
a[k][j]=a[s][j];
a[s][j]=m;
}
}
if(a[k][k]==0)
{
cout << "求解失败!";
break;
}
for(i=k+1;i<N;i++)
{
m = a[i][k] / a[k][k];
a[i][k] = 0;
for(j=k+1;j<=N;j++) // j<=N?
a[i][j] = a[i][j] - a[k][j] * m;
}
}
// 回代过程
x[N-1] = a[N-1][N] / a[N-1][N-1];
for(k=N-2;k>=0;k--)
{
for(j=k+1;j<N;j++)
{
a[k][N] = a[k][N] - a[k][j] * x[j];
}
x[k] = a[k][N] / a[k][k];
}
// 输出结果
for(k=0;k<N;k++)
cout << x[k]<<endl;
}
三:顺序高斯消去算法相对应的LU分解方法:
程序段:
#include <iostream.h>
#include <math.h>
#define N 4
void main()
{
double a[N][N]={0.3e-15,59.14,3,1,
5.291,-6.13,-1,2,
11.2,9,5,2,
1,2,1,1 }; //存储矩阵A
double x[N],b[N]={59.17,46.78,1,2};
int i,j,k;
//****** 开始LU分解 *************
for(k=0;k<N-1;k++)
{
if(a[k][k]==0)
{
cout << "主元素为零!" << endl;
break;
}
for(i=k+1;i<N;i++)
{
a[i][k] = a[i][k] / a[k][k]; // 矩阵A的严格下三角部分存储L矩阵的严格下三角部分
for(j=k+1;j<N;j++)
{
a[i][j] = a[i][j] - a[i][k] * a[k][j];
} //计算U矩阵
}
}
//********* LU 分解完成 **************
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
cout << a[i][j] << " ";
}
cout << endl;
} // 输出 LU 分解
x[0]=b[0];
for(k=1;k<N;k++)
{
for(j=0;j<k;j++)
{
b[k]=b[k]-a[k][j]*x[j];
}
x[k]=b[k];
}
x[N-1]=x[N-1]/a[N-1][N-1];
for(k=N-2;k>=0;k--)
{
for(j=k+1;j<N;j++)
{
x[k] = x[k] - a[k][j] * x[j];
}
x[k] = x[k] / a[k][k];
}
for(k=0;k<N;k++)
cout << x[k]<<endl;
}
四:列主元高斯消去算法所对应的LU分解方法:
程序段:
#include <iostream.h>
#include <math.h>
#define N 4
void main()
{
double a[N][N]={0.3e-15,59.14,3,1,
5.291,-6.13,-1,2,
11.2,9,5,2,
1,2,1,1 }; //存储矩阵A
double x[N],b[N]={59.17,46.78,1,2};
int p[N]; // 记录分解过程中的行交换!
int i,j,k;
for(k=0;k<N;k++)
p[k] = k+1; // 初始化,相当于单位阵
//****** 开始LU分解 *************
for(k=0;k<N-1;k++)
{
int s,t; //s存储当前列绝对值最大的元素所在的行号,t为中间变量
s=k;
for(i=k+1;i<N;i++)
{
if(fabs(a[i][k])>fabs(a[s][k]))
s=i;
} // 选主元素
if(s!=k)
{
double m;
for(j=0;j<N;j++)// 注意这里要交换k、s两行所有的元素
{
m = a[k][j];
a[k][j] = a[s][j];
a[s][j] = m;
} // 交换行
t= p[s];
p[s] = p[k];
p[k] = t; //记录当前行交换
}
if(a[k][k]==0)
{
cout << "存在为零的主元素!" << endl;
continue;
}// 判定主元素为零,矩阵奇异,方程组解不唯一
for(i=k+1;i<N;i++)
{
a[i][k] = a[i][k] / a[k][k]; // 矩阵A的严格下三角部分存储L矩阵的严格下三角部分
for(j=k+1;j<N;j++)
{
a[i][j] = a[i][j] - a[i][k] * a[k][j];
} //计算U矩阵
}
}
//********* LU 分解完成 **************
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
cout << a[i][j] << " ";
}
cout << endl;
} // 输出 LU 分解
x[0]=b[0];
for(k=1;k<N;k++)
{
for(j=0;j<k;j++)
{
b[k]=b[k]-a[k][j]*x[j];
}
x[k]=b[k];
}
x[N-1]=x[N-1]/a[N-1][N-1];
for(k=N-2;k>=0;k--)
{
for(j=k+1;j<N;j++)
{
x[k] = x[k] - a[k][j] * x[j];
}
x[k] = x[k] / a[k][k];
}
for(k=0;k<N;k++)
cout << x[k]<<endl;
}
还有一些迭代法;
一:雅可比迭代
#define N 4 // 线性方程组的阶数
#include <iostream.h>
#include <math.h>
void main()
{
double a[N][N]={-4,1,1,1,1,-4,1,1,1,1,-4,1,1,1,1,-4}, //系数矩阵
b[N]={1,1,1,1}; //右端常数向量
double x0[N]={1,1,1,1},x[N]; // 迭代初始向量和迭代向量
double e=1e-5; // 精度要求
int M=5000; //最大迭代次数
int i,j,c_M=0;
double sum,current_e;
do{
current_e=0;
for(i=0;i<N;i++)
{
sum = 0;
for(j=0;j<N;j++)
{
if(j!=i)
{
sum = sum + a[i][j] * x0[j];
}
}
x[i] = (b[i] - sum) / a[i][i];
}// 更新迭代向量
c_M++; //迭代次数加1
for(i=0;i<N;i++)
{
if(fabs(x[i]-x0[i])>current_e)
current_e = fabs(x[i]-x0[i]);
} //计算当前误差
for(i=0;i<N;i++)
x0[i] = x[i]; //更新初始向量
}while(current_e>e&&c_M<M); //判断是否仍未达到精度要求且未达到最大迭代次数
for(i=0;i<N;i++)
cout << x[i] << endl; //输出结果
cout << c_M << endl; //输出迭代次数
}
二:高斯-塞德尔(Gauss-Seidel)迭代算法
程序
#define N 3 // 线性方程组的阶数
#include <iostream.h>
#include <math.h>
void main()
{
double a[N][N]={5,2,1,
2,8,-3,
1,-3,-6}, //系数矩阵
b[N]={8,21,1}; //右端常数向量
double x0[N]={1,1,1},x[N]; // 迭代初始向量和迭代向量
double e=1e-5; // 精度要求
int M=5000; //最大迭代次数
int i,j,c_M=0;
double sum,current_e;
do{
current_e=0;
for(i=0;i<N;i++)
{
sum = 0;
for(j=0;j<N;j++)
{
if(j<i)
{
sum = sum + a[i][j] * x[j];
}
if(j>i)
{
sum = sum + a[i][j] * x0[j];
}
}
x[i] = (b[i] - sum) / a[i][i];
}// 更新迭代向量
c_M++; //迭代次数加1
for(i=0;i<N;i++)
{
if(fabs(x[i]-x0[i])>current_e)
current_e = fabs(x[i]-x0[i]);
} //计算当前误差
for(i=0;i<N;i++)
x0[i] = x[i]; //更新初始向量
}while(current_e>e&&c_M<M); //判断是否仍未达到精度要求且未达到最大迭代次数
for(i=0;i<N;i++)
cout << x[i] << endl; //输出结果
cout << c_M << endl; //输出迭代次数
}
三:SOR迭代算法
程序
#define N 4 // 线性方程组的阶数
#include <iostream.h>
#include <math.h>
void main()
{
double a[N][N]={-4,1,1,1,
1,-4,1,1,
1,1,-4,1,
1,1,1,-4}, //系数矩阵
b[N]={1,1,1,1}; //右端常数向量
double x0[N]={1,1,1,1},x[N]; // 迭代初始向量和迭代向量
double e=1e-5,w=0.5; // 精度要求
int M=5000; //最大迭代次数
int i,j,c_M=0;
double sum,current_e;
do{
current_e=0;
for(i=0;i<N;i++)
{
sum = 0;
for(j=0;j<N;j++)
{
if(j<i)
{
sum = sum + a[i][j] * x[j];
}
if(j>i)
{
sum = sum + a[i][j] * x0[j];
}
}
x[i] = (1-w)*x0[i] + w*(b[i] - sum) / a[i][i];
}// 更新迭代向量
c_M++; //迭代次数加1
for(i=0;i<N;i++)
{
if(fabs(x[i]-x0[i])>current_e)
current_e = fabs(x[i]-x0[i]);
} //计算当前误差
for(i=0;i<N;i++)
x0[i] = x[i]; //更新初始向量
}while(current_e>e&&c_M<M); //判断是否仍未达到精度要求且未达到最大迭代次数
for(i=0;i<N;i++)
cout << x[i] << endl; //输出结果
cout << c_M << endl; //输出迭代次数
}
用C语言编写一段程序,求一个一元一次方程
include<stdio.h> include<math.h> define step 0.000001 define pi 3.14159265 int main(){ double x= 0;for(x= step ; x<2*pi; x+= step)if( fabs(sin(77.8*x)\/sin(79.8*x)-0.9197) <= 0.000001 )printf("%lf\\n", x);return 0;} ...
编写一个C语言程序,既能计算长方形的面积,又能计算正方形的面积
C语言程序如下:include <stdio.h> \/\/头文件int main(){ \/\/定义长河宽 double weight,height; printf("请输入长方形或者正方形的长和宽:\\n"); \/\/用户输入 scanf("%lf%lf",&weight,&height); \/\/点击头像,加群 printf("面积为:%lf\\n",weight*height); \/\/专业...
用C语言编写一个程序,计算一元二次方程的解(x1,x2)。一元二次方程:Ax2...
int main(){ float a,b,c;scanf("%f",&a);scanf("%f",&b);scanf("%f",&c);printf("%f\\n",(-b+sqrt(b*b-4*a*c))\/2\/a);printf("%f",(-b-sqrt(b*b-4*a*c))\/2\/a);system("pause");return 0;};参考资料:自己写的 ...
C语言程序设计 求一个四位数的各位数字的立方和
include<stdio.h> void main(){ long int b,c,d,e,x;printf("请输入任意一个正整数\\n");scanf("%ld",&x);b=x%10000\/1000; \/*分解出千位*\/ c=x%1000\/100; \/*分解出百位*\/ d=x%100\/10; \/*分解出十位*\/ e=x%10; \/*分解出个位*\/ printf("四位数的立方和为:%ld\\n",(b...
谁能帮我设计一个C语言程序,求解方程组的,急啊,哪位高手帮下咯,万分感...
假定你要的是线性方程组,下面的 float *GauseSeidel(float *a,int n)是高斯赛德尔法求解线性方程组的通用子程序。N 是 迭代次数极限。main()里写了调用的例子。include <stdio.h> include <stdlib.h> include <math.h> define N 100 float *GauseSeidel(float *a,int n){ int i,j,nu=0;...
用C语言编写:从键盘输入任意一个正整数,求其各位数字立方和
本人也是学C语言的,以下的程序是按照你的要求编写的:#include <stdio.h> \/\/求输入数各位数的立方和 void main(){ int x,sum=0,j;printf("请输入一个正整数:");scanf("%d",&x); \/\/输入一个数 while(x!=0) \/\/判断X是否为零 { j=x%10; \/\/取个位数字 sum+=j*j*...
C语言程序设计求方程的解:求ax2+bx+c=0方程的实根
void main(){ float a,b,c,d;float x1,x2;printf("please input 3 numbers:\\n");scanf("%f%f%f",&a,&b,&c);d=b*b-4*a*c;if(d>0){ d=sqrt(d);x1=(-b+d)\/(2*a);x2=(-b-d)\/(2*a);printf("%.2f\\n%.2f\\n",x1,x2);} else if ((int)d==0){ x1=-b\/...
c语言程序设计 输入一个三位数,输出为各个位数上的数的立方和,求答
b#include<stdio.h> void main(){ int n,a,b,c,sum;printf("输入一个三位数\\n");scanf("%d",&n);a=n\/100;b=(n%100)\/10;c=(n%10);sum=a*a*a+b*b*b+c*c*c;printf("各个位数上的数的立方和为%d\\n",sum);}
求解一元三次方程的C语言程序
:用弦截法求方程F(x)=X^3-5X^2+16X-80=0的根。方法如下:(1)取两个不同的点x1,x2,如果f(x1)和f(x2)符号相反,则(x1,x2)区间内必有一个根。如果f(x1)和f(x2)同符号,则应改变x1,x2,直到f(x1)和f(x2)异号为止。注意x1和x2的值不应差太大,以保证(x1,x2)区间内...
怎样用C语言编一个解一元二次方程的程序?
这个只能计算已经化简成aX^2+bX+c=0的一元二次方程 int fun(double a,double b,double c,double *x1,double *x2)\/\/由于方程既可能无解也可能有两个解,所以不能直接返回X的值{ double p=b*b-4*a*c;\/\/计算Δ if (p<0) { return 0;\/\/方程无解,返回0 } p=√...