重心分割中线段,线段之比二比一。对吗?

供稿:hz-xin.com     日期:2025-01-08
如何证明三角形的重心把中线分成2比1的两部分

已知△ABC,D、E、F分别为BC、AC、AB的中点.那么AD、BE、CF三线共点,即重心G.现在证明DG:AG=1:2
证明:
连结EF交AD于M,则M为AD中点
EF为△ABC的中位线,
所以EF‖BC且EF:BC=1:2
由平行线分线段成比例定理有:
GM:MD=EF:BC=1:2
设GM=x,那么GD=2x
DM=GM+GD=3x
AD=2GM=6x
AG=AD-GD=4x
所以GD:AD=2x:4x=1:2

扩展资料:
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
参考资料:
百度百科-三角形重心

证明:
连结EF交AD于M,则M为AD中点
EF为△ABC的中位线,
所以EF‖BC且EF:BC=1:2
由平行线分线段成比例定理有:
GM:MD=EF:BC=1:2
设GM=x,那么GD=2x
DM=GM+GD=3x
AD=2GM=6x
AG=AD-GD=4x
所以GD:AD=2x:4x=1:2




扩展资料
重心的几条性质 :
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。
5.重心是三角形内到三边距离之积最大的点。
6.三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC²+CA²)。
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。
9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA²+PB²+PC²=GA²+GB²+GC²+3PG²。
参考资料来源:百度百科-重心

重心是中线的交点,任何三角形都有,而且重心把每条中线分成的比例都是2:1,等边三角形也是,而不是1:1

重心分割中线段,线段之比二比一。对吗?
重心是中线的交点,任何三角形都有,而且重心把每条中线分成的比例都是2:1,等边三角形也是,而不是1:1

重心为什么是2比1
重心是2比1是因为三角形重心的性质。三角形重心是三角形三边每一边的三条中线的交点。当几何体为匀质物体时,重心与形心重合。三条中线必相交,交点命名为重心;重心分割中线段,线段之比二比一。三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1。重心和三角形3个顶点组成的3个...

等边三角形的重心怎么确定
方法:三条中线必相交,交点命名为重心。重心分割中线段,线段之比二比一。

三角形的三心(重心、中心、垂心)的定义是什么?
三角形“五心歌”三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现...

三角形的重心是哪三条线的交点
三角形的重心是三条中线的交点,垂心是三条高线的交点,外心是三边中垂线的交点,内心是内角平分线的交点。三角形的三条中线必相交,交点命名为“重心”,重心分割中线段,线段之比二比一。任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。重心:三角形三边中线的交点,为三角形的重心;在...

三条中线的交点怎样得出其性质
三角形三条中线的交点叫做重心,顺口溜 三条中线必相交,交点命名为“重心”重心分割中线段,线段之比二比一;重心有以下性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离平方的和最小。4、在平面直角坐标系...

三角形五心口诀
重心分割中线段,数段之比听分晓,长短之比二比一,灵活运用掌握好。重心:是指三角形的三条中线的交点。外心记忆口诀:三角形有六元素,三个内角有三边,作三边的中垂线,三线相交共一点,此点定义为外心,用它可作外接圆,内心外心莫记混,内切外接是关键。外心:是指三角形三条边的垂直平分线...

重心是什么的交线
三角形重心是三角形三边每一边的三条中线的交点。当几何体为匀质物体时,重心与形心重合。三条中线必相交,交点命名为重心;重心分割中线段,线段之比二比一。重心到顶点的距离与重心到对边中点的距离之比为2:1。重心和三角形3个顶点组成的3个三角形面积相等。对于均质物体,如在几何形体上具有对称面...

三角形五心口诀是什么?
三角形五心口诀:三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混。重心记忆口诀:三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了。重心分割中线段,数段之比听分晓,长短之比二比一,灵活运用掌握好。重心:是指三角形的三条中线的交点。外心记忆口诀:三角形...

三角形五心的顺口溜是什么?
三角形有五颗心,重外垂内和旁心, 五心性质很重要,认真掌握莫记混.重 心 三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了, 重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好.外 心 三角形有六元素,三个内角有三边. 作三边的中垂线,三线相交共...