快中考了,二次函数学的很差,谁有关于初中数学的二次函数的所有全面知识。万分感谢!!
不知道怎么发给你 我乱删减了很多····你还是到文库里看看吧。。丫的就要中考了,我也很紧张啊
1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上 ,x为任意实数
点P(x,y)在y轴上 ,y为任意实数
点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上 x与y相等
点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称 横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
考点三、函数及其相关概念 (3~8分)
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
考点四、正比例函数和一次函数 (3~10分)
1、正比例函数和一次函数的概念
一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。
特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。
k的符号b的符号函数图像图像特征
k>0b>0 y
0 x
图像经过一、二、三象限,y随x的增大而增大。
b<0 y
0 x
图像经过一、三、四象限,y随x的增大而增大。
K0 y
0 x
图像经过一、二、四象限,y随x的增大而减小
b<0
y
0 x
图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质,,一般地,正比例函数 有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质,,一般地,一次函数 有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法。
考点五、反比例函数 (3~10分)
1、反比例函数的概念
一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x 0,函数y 0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数
k的符号k>0k<0
图像
y
O x
y
O x
性质①x的取值范围是x 0,
y的取值范围是y 0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。①x的取值范围是x 0,
y的取值范围是y 0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数 图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM PN= 。 。
二次函数
考点一、二次函数的概念和图像 (3~8分)
1、二次函数的概念
一般地,如果 ,那么y叫做x 的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于 对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线 与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
考点二、二次函数的解析式 (10~16分)
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线 与x轴有交点时,即对应二次好方程 有实根 和 存在时,根据二次三项式的分解因式 ,二次函数 可转化为两根式 。如果没有交点,则不能这样表示。
考点三、二次函数的最值 (10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 时, 。
如果自变量的取值范围是 ,那么,首先要看 是否在自变量取值范围 内,若在此范围内,则当x= 时, ;若不在此范围内,则需要考虑函数在 范围内的增减性,如果在此范围内,y随x的增大而增大,则当 时, ,当 时, ;如果在此范围内,y随x的增大而减小,则当 时, ,当 时, 。
考点四、二次函数的性质 (6~14分) 1、二次函数的性质
函数二次函数
图像a>0a<0
y
0 x
y
0 x
性质(1)抛物线开口向上,并向上无限延伸;
(2)对称轴是x= ,顶点坐标是( , );
(3)在对称轴的左侧,即当x 时,y随x的增大而增大,简记左减右增;
(4)抛物线有最低点,当x= 时,y有最小值,
(1)抛物线开口向下,并向下无限延伸;
(2)对称轴是x= ,顶点坐标是( , );
(3)在对称轴的左侧,即当x 时,y随x的增大而减小,简记左增右减;
(4)抛物线有最高点,当x= 时,y有最大值,
2、二次函数 中, 的含义: 表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下
与对称轴有关:对称轴为x=
表示抛物线与y轴的交点坐标:(0, )
3、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。
当 >0时,图像与x轴有两个交点;
当 =0时,图像与x轴有一个交点;
当 <0时,图像与x轴没有交点。
补充:
1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)
y
如图:点A坐标为(x1,y1)点B坐标为(x2,y2)
则AB间的距离,即线段AB的长度为 A
0 x
B
2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)
3、直线斜率: b为直线在y轴上的截距
4、直线方程: 一般两点斜截距
1,一般 一般 直线方程 ax+by+c=0
2,两点 由直线上两点确定的直线的两点式方程,简称两点式:
--最最常用,记牢
3,点斜 知道一点与斜率
4,斜截 斜截式方程,简称斜截式: y=kx+b(k≠0)
5 ,截距 由直线在 轴和 轴上的截距确定的直线的截距
式方程,简称截距式:
记牢可大幅提高运算速度
5、设两条直线分别为, : :
若 ,则有 且 。
若
6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离:
对于点P(x0,y0)到直线滴一般式方程 ax+by+c=0 滴距离有
常用记牢
中考点击
考点分析:
内容要求
1、函数的概念和平面直角坐标系中某些点的坐标特点Ⅰ
2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系Ⅰ
3、一次函数的概念和图像Ⅰ
4、一次函数的增减性、象限分布情况,会作图Ⅱ
5、反比例函数的概念、图像特征,以及在实际生活中的应用Ⅱ
6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题Ⅱ
命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题.会求一元二次方程的近似值.
分析近年中考,尤其是课改实验区的试题,预计2007年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.
初中数学助记口诀(函数部分)
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“同左上加,异右下减”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
1.一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号;
同类项、合并好,再把系数来除掉;
两边除(以)负数时,不等号改向别忘了。
2.特殊点坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
X轴上y为0,x为0在Y轴。
3.平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行X轴,纵坐标相等横不同;
直线平行于Y轴,点的横坐标仍照旧。
4.对称点坐标:
对称点坐标要记牢,相反数位置莫混淆,
X轴对称y相反, Y轴对称,x前面添负号;
原点对称最好记,横纵坐标变符号。
5.自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行。
6.函数图像的移动规律:
若把一次函数解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则用下面后的口诀:
“左右平移在括号,上下平移在末稍,
左正右负须牢记,上正下负错不了”。
7.一次函数图像与性质口诀:
一次函数是直线,图像经过仨象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与Y轴来相见,
k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
8.二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。
9.反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远;
k为正,图在一、三(象)限;k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
10.求定义域:
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
11.解一元一次不等式:
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
12.解一元一次不等式组:
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
13.解一元二次不等式:
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
13.1 用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
14.用常规配方法解一元二次方程:
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
15.用间接配方法解一元二次方程:
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
16.解一元二次方程:
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
17.正比例函数的鉴别:
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
18.正比例函数的图象与性质:
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
19.一次函数:
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
20.反比例函数:
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
21.二次函数:
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
22.列方程解应用题:
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
23.两点间距离公式:
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
二次函数知识点:1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.
2. 二次函数 的结构特征:
⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.
⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.
二次函数的基本形式
1. 二次函数基本形式: 的性质:
结论:a 的绝对值越大,抛物线的开口越小。
总结:
的符号
开口方向顶点坐标对称轴性质
向上
轴
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
轴
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
2. 的性质:
结论:上加下减。同左上加,异右下减
总结:
的符号
开口方向顶点坐标对称轴性质
向上
轴
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
轴
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
3. 的性质:
结论:左加右减。同左上加,异右下减
总结:
的符号
开口方向顶点坐标对称轴性质
向上
X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
4. 的性质:
总结:
的符号
开口方向顶点坐标对称轴性质
向上
X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
函数在中考中所占比重大概25%---40%,据情况而定分值。一般都是选择题、填空题各一个小题,最后压轴题经常是函数。
初三数学 二次函数 知识点总结一、二次函数概念:
1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.
2. 二次函数 的结构特征:
⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.
⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.
二、二次函数的基本形式
1. 二次函数基本形式: 的性质:
a 的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
轴
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
2. 的性质:
上加下减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
轴
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
3. 的性质:
左加右减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
4. 的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
三、二次函数图象的平移
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ;
⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下:
2. 平移规律
在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
方法二:
⑴ 沿 轴平移:向上(下)平移 个单位, 变成
(或 )
⑵ 沿轴平移:向左(右)平移 个单位, 变成 (或 )
四、二次函数 与 的比较
从解析式上看, 与 是两种不同的表达形式,后者通过配方可以得到前者,即 ,其中 .
五、二次函数 图象的画法
五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 , (若与 轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
六、二次函数 的性质
1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 .
当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最小值 .
2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 .当 时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 .
七、二次函数解析式的表示方法
1. 一般式: ( , , 为常数, );
2. 顶点式: ( , , 为常数, );
3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
八、二次函数的图象与各项系数之间的关系
1. 二次项系数
二次函数 中, 作为二次项系数,显然 .
⑴ 当 时,抛物线开口向上, 的值越大,开口越小,反之 的值越小,开口越大;
⑵ 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越大.
总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决定开口的大小.
2. 一次项系数
在二次项系数 确定的前提下, 决定了抛物线的对称轴.
⑴ 在 的前提下,
当 时, ,即抛物线的对称轴在 轴左侧;
当 时, ,即抛物线的对称轴就是 轴;
当 时, ,即抛物线对称轴在 轴的右侧.
⑵ 在 的前提下,结论刚好与上述相反,即
当 时, ,即抛物线的对称轴在 轴右侧;
当 时, ,即抛物线的对称轴就是 轴;
当 时, ,即抛物线对称轴在 轴的左侧.
总结起来,在 确定的前提下, 决定了抛物线对称轴的位置.
的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,概括的说就是“左同右异”
总结:
3. 常数项
⑴ 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;
⑵ 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ;
⑶ 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负.
总结起来, 决定了抛物线与 轴交点的位置.
总之,只要 都确定,那么这条抛物线就是唯一确定的.
二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1. 已知抛物线上三点的坐标,一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;
4. 已知抛物线上纵坐标相同的两点,常选用顶点式.
九、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
1. 关于 轴对称
关于 轴对称后,得到的解析式是 ;
关于 轴对称后,得到的解析式是 ;
2. 关于 轴对称
关于 轴对称后,得到的解析式是 ;
关于 轴对称后,得到的解析式是 ;
3. 关于原点对称
关于原点对称后,得到的解析式是 ;
关于原点对称后,得到的解析式是 ;
4. 关于顶点对称(即:抛物线绕顶点旋转180°)
关于顶点对称后,得到的解析式是 ;
关于顶点对称后,得到的解析式是 .
5. 关于点 对称
关于点 对称后,得到的解析式是
根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
十、二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与 轴交点情况):
一元二次方程 是二次函数 当函数值 时的特殊情况.
图象与 轴的交点个数:
① 当 时,图象与 轴交于两点 ,其中的 是一元二次方程 的两根.这两点间的距离 .
② 当 时,图象与 轴只有一个交点;
③ 当 时,图象与 轴没有交点.
当 时,图象落在 轴的上方,无论 为任何实数,都有 ;
当 时,图象落在 轴的下方,无论 为任何实数,都有 .
2. 抛物线 的图象与 轴一定相交,交点坐标为 , ;
3. 二次函数常用解题方法总结:
⑴ 求二次函数的图象与 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数 中 , , 的符号,或由二次函数中 , , 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式 本身就是所含字母 的二次函数;下面以 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
抛物线与 轴有两个交点
二次三项式的值可正、可零、可负
一元二次方程有两个不相等实根
抛物线与 轴只有一个交点
二次三项式的值为非负
一元二次方程有两个相等的实数根
抛物线与 轴无交点
二次三项式的值恒为正
一元二次方程无实数根.
二次函数图像参考:
十一、函数的应用
二次函数应用
二次函数考查重点与常见题型
1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以 为自变量的二次函数 的图像经过原点, 则 的值是
2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如图,如果函数 的图像在第一、二、三象限内,那么函数 的图像大致是( )
y y y y
1 1
0 x o-1 x 0 x 0 -1 x
A B C D
3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为 ,求这条抛物线的解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线 (a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-
(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
5.考查代数与几何的综合能力,常见的作为专项压轴题。
【例题经典】
由抛物线的位置确定系数的符号
例1 (1)二次函数 的图像如图1,则点 在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
(1) (2)
【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.
例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1<x1<2,与y轴的正半轴的交点在点(O,2)的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a-b+1>O,其中正确结论的个数为( )
A 1个 B. 2个 C. 3个 D.4个
答案:D
会用待定系数法求二次函数解析式
例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为( )
A(2,-3) B.(2,1) C(2,3) D.(3,2)
答案:C
例4、如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.
(1)写出y与x的关系式;
(2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形面积的一半时,
三角形移动了多长时间?求抛物线顶点坐标、
对称轴.
例5、已知抛物线y= x2+x- .
(1)用配方法求它的顶点坐标和对称轴.
(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.
【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.
例6、 “已知函数 的图象经过点A(c,-2),
求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。
点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A(c,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。
[解答] (1)根据 的图象经过点A(c,-2),图象的对称轴是x=3,得
解得
所以所求二次函数解析式为 图象如图所示。
(2)在解析式中令y=0,得 ,解得
所以可以填“抛物线与x轴的一个交点的坐标是(3+ ”或“抛物线与x轴的一个交点的坐标是
令x=3代入解析式,得
所以抛物线 的顶点坐标为
所以也可以填抛物线的顶点坐标为 等等。
函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。
用二次函数解决最值问题
例1已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.
【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.
例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元)
15
20
30
…
y(件)
25
20
10
…
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?
【解析】(1)设此一次函数表达式为y=kx+b.则 解得k=-1,b=40,即一次函数表达式为y=-x+40.
(2)设每件产品的销售价应定为x元,所获销售利润为w元
w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.
产品的销售价应定为25元,此时每日获得最大销售利润为225元.
【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.
二次函数对应练习试题
一、选择题
1. 二次函数 的顶点坐标是( )
A.(2,-11) B.(-2,7) C.(2,11) D. (2,-3)
2. 把抛物线 向上平移1个单位,得到的抛物线是( )
A. B. C. D.
3.函数 和 在同一直角坐标系中图象可能是图中的( )
4.已知二次函数 的图象如图所示,则下列结论: ①a,b同号;②当 和 时,函数值相等;③ ④当 时, 的值只能取0.其中正确的个数是( )
A.1个 B.2个 C. 3个 D. 4个
5.已知二次函数 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 的一元二次方程 的两个根分别是 ( )
A.-1.3 B.-2.3 C.-0.3 D.-3.3
6. 已知二次函数 的图象如图所示,则点 在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
7.方程 的正根的个数为( )
A.0个 B.1个 C.2个. 3 个
8.已知抛物线过点A(2,0),B(-1,0),与 轴交于点C,且OC=2.则这条抛物线的解析式为
A. B.
C. 或 D. 或
二、填空题
9.二次函数 的对称轴是 ,则 _______。
10.已知抛物线y=-2(x+3)²+5,如果y随x的增大而减小,那么x的取值范围是_______.
11.一个函数具有下列性质:①图象过点(-1,2),②当 <0时,函数值 随自变量 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。
12.抛物线 的顶点为C,已知直线 过点C,则这条直线与两坐标轴所围成的三角形面积为 。
13. 二次函数 的图象是由 的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。
14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是 (π取3.14).
三、解答题:
第15题图
15.已知二次函数图象的对称轴是 ,图象经过(1,-6),且与 轴的交点为(0, ).
(1)求这个二次函数的解析式;
(2)当x为何值时,这个函数的函数值为0?
(3)当x在什么范围内变化时,这个函数的函数值 随x的增大而增大?
16.某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式 (0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升,
(1)这种爆竹在地面上点燃后,经过多少时间离地15米?
(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.
17.如图,抛物线 经过直线 与坐标轴的两个交点A、B,此抛物线与 轴的另一个交点为C,抛物线顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使 : 5 :4的点P的坐标。
18. 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该建材店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
练习试题答案
一,选择题、
1.A 2.C 3.A 4.B 5.D 6.B 7.C 8.C
二、填空题、
9. 10. <-3 11.如 等(答案不唯一) 12.1 13.-8 7 14.15
三、解答题
15.(1)设抛物线的解析式为 ,由题意可得
解得 所以
(2) 或-5 (2)
16.(1)由已知得, ,解得 当 时不合题意,舍去。所以当爆竹点燃后1秒离地15米.(2)由题意得, = ,可知顶点的横坐标 ,又抛物线开口向下,所以在爆竹点燃后的1.5秒至108秒这段时间内,爆竹在上升.
17.(1)直线 与坐标轴的交点A(3,0),B(0,-3).则 解得
所以此抛物线解析式为 .(2)抛物线的顶点D(1,-4),与 轴的另一个交点C(-1,0).设P ,则 .化简得
当 >0时, 得 ∴P(4,5)或P(-2,5)
当 <0时, 即 ,此方程无解.综上所述,满足条件的点的坐标为(4,5)或(-2,5).
18.(1) =60(吨).(2) ,化简得: .(3) .
红星经销店要获得最大月利润,材料的售价应定为每吨210元.
(4)我认为,小静说的不对. 理由:方法一:当月利润最大时,x为210元,而对于月销售额 来说,
当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.
方法二:当月利润最大时,x为210元,此时,月销售额为17325元; 而当x为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W不是最大.∴小静说的不对.
1、http://wenku.baidu.com/search?word=%B6%FE%B4%CE%BA%AF%CA%FD&lm=0&od=0&fr=top_home
2、http://wenku.baidu.com/view/5b10150216fc700abb68fc2e?fr=hittag&album=doc&tag_type=1
如有帮助,望采纳
不就是抛物线
快中考了,二次函数学的很差,谁有关于初中数学的二次函数的所有全面知识...
1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.2. 二次函数 的结构特征:⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.⑵ 是常数, 是二次项系...
数学二次函数学不会怎么办,对中考有影响吗?
影响不是很大,我们这里就最后的压轴题是二次函数,其他都是夹杂着考分值不大,就算你函数不做,也考上高中了,你高中也只能呵呵了。不过初中的函数很好学,自己多花点时间就可以学好。当你努力过,不管结果怎样,你都不会后悔
初三二次函数没学好,高中数学有困难吗?
还是有一定影响的。不过没关系,学校应该会有那个衔接班,到时候会继续讲解的。是在不行的话就专门找些练习来坐坐,这个二次函数一定要掌握的。到高中求最大最小值都有用的,而且高二在这个基础上学习二次函数不等式。所以,你应该趁着这个暑假把他搞定。
如何学好二次函数,我的二次函数学得非常差啊,快要中考了,着急,各位...
一般式y=ax2+bx+c 顶点式y=a(x-b)2+c 双根式y=a(x-x1)(x-x2)熟悉二次函数的对称轴x=-b\\2a 最值 4ac-b2\\4a 极值点(-b\\2a, 4ac-b2\\4a)还要知道二次函数的a对图像的影响 a>0则开口向上 a<0则开口向下 知识点差不多就这么多 找几道中考题认真的做下一 确实搞懂 本...
数学二次函数怎么学都学不好,怎么办?
后来快考试了,看了下数学书 ,发现其实很简单,但是函数这里的题就是灵活,它能跟图形三角形什么的都结合起来,但是就单单函数来讲,就那么几个公式而已 背过就好超级简单,主要的还是其他的,顺带一提 二次函数中考分值并不是很高,我们老师说二次函数一般都是压轴题,如果实在不会就不会了,掌握...
二次函数真心烦,如果我二次函数学不好就拿不了高分,快要升中考了,我...
二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。误区提醒 (1)对二次函数概念理解有误,漏掉二次项系数不为0这一限制条件;(2)对二次函数图像和性质存在思维误区;(3)忽略二次函数自变量取值范围;...
孩子读初三了,二次函数学得很不好,怎么办?
其实二次函数很好学,主要掌握基本的函数的性质,每种函数掌握以下就可以,初三这个要补习以下了,要不然会影响成绩的,因为中考的时候很多题都会涉及到二次函数的,不能大意,孩子学进去掌握技巧了就会觉得很好学。
初中二次函数学的特别不好,二次函数相关知识在中考中分值占的比重大吗...
函数在中考中所占比重大概25%---40%,据情况而定分值。一般都是选择题、填空题各一个小题,最后压轴题经常是函数。
...觉得我数学不错 可是现在上了初三 学到了二次函数与圆就觉得很难了...
如我也经历过一个孩子,他刚好也是九年级,数学也存在一定的问题,成绩开始也不理想,可找到他的问题后,成绩上升很快。我觉得先把这部分的基础知识学熟,对于公式和一般问题的应用熟悉后,再有针对性的加强类型题的学习和归纳,在心中有一个明确的方向和解题技巧,那相对来说应好一些。祝有帮助,祝...
我初二了,数学很差,特别是函数。要怎么补救
有时候,我会觉得自己已经很努力了,却没有取得预期的成果,这往往是因为方法不对。在学习数学时,掌握正确的方法至关重要。我以前从没听说过二次函数三角形、四边形求面积法,二次函数求最值法,将军饮马,半角模型等,这些都是提高解题能力的关键。掌握这些方法,才能更好地思考问题,真正理解题目。拓...