学高数 线性代数 复变函数 对计算机专业来说有用吗?

供稿:hz-xin.com     日期:2025-01-18
为什么说线性代数对学计算机的很重要?

线性代数对学计算机很重要。应用计算机的高速运算功能解决实际问题离不开线性代数的知识。
计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。
线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。总之,线性代数对学计算机很重要,方法和思想并重。

扩展资料:
定理:
1、矩阵非奇异(可逆)当且仅当它的行列式不为零。
2、矩阵非奇异当且仅当它代表的线性变换是个自同构。
3、矩阵半正定当且仅当它的每个特征值大于或等于零。
4、矩阵正定当且仅当它的每个特征值都大于零。
5、解线性方程组的克拉默法则。
6、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
参考资料来源:百度百科-线性代数

你要搞学术的话做研究,除了计算机知识,一般就是跟数学的东西打交道了,所以你如果考研,以后想做学术研究,高数是挺重要的。其它神马二进制,不学高数照样看得懂,算法里面用高数也就是用来复杂度分析的。另外学好离散数学对计算机帮助挺大的,离散的好多概念在数据库、操作系统、算法里有涉及到。
如果只是编程,搞开发,你完全不会高数也没关系的,你看社会上的计算机培训机构,有教你高数的么,都没有吧,就业不也不错么?
计算机方向很多,很多方向不需要高数等知识都可以,譬如web前端、后端、测试等。

有用。

在当下,计算机科学领域里能大量运用高数线代的当属于工程领域。如流体力学弹性力学材料力学中各种工程问题的处理。比较典型的就是使用有限元法处理流体力学中理想流体在粘性流体运动问题。工程中锈钢柔性细管的空拔过程问题。在大量数据矩阵时运用矩阵运算法则简化运算
还有物理学领域中电子设计中复变函数应用较多。如电路理论中解线性方程量子力学中的波函数量子场论,其中Wick's rotation便牵涉到i多体理论中算的积分,很多都要用Residue Theorem,尤其牵涉到波色分布和费米分布(通常推延到Matsubara frequency)还有很多用了复数就可以简化计算的例子
自然语言处理中也有高数线代的大量应用。如如何将不同自然语言使用机器翻译,语音识别。数据通信等。并且这些人工来处理很难,大多需要计算机来辅助。所以计算机专业很有必要学。但是学的精的少些

在我大一时无意中找到了南京大学网友sir的帖子"胡侃(理论)计算机学习",这个帖子对我的大学学习起了至关重要的作用,后来也同他进行了一些交流,写这份材料时也引用了其中的不少观点,并得到了sir的支持。再有就是每次和本系司徒彦南兄的交谈,都能从中学到很多东西,在这份材料中也有很多体现。这份材料是我原来在实验学院进行新生入学教育的讲稿之一,原有基础上改进了其中我认为不太合适的理论,修正了一些观点,在推荐教材方面结合我的学习情况有了较大改变。值得一提的是增加了一些计算机理论的内容,计算机技术的内容结合我国的教学情况和我们学习的实际情况进行了重写。这里所作的工作也只是将各位学长和同学们的学习体会以及我在学习计算机科学时的所思所想汇总在一起写了下来,很不成熟。目的就是希望能够给一些刚入学或者是学习计算机科学还没有入门的同学以一些建议。不期能够起到多大的作用,但求能为同学们的学习计算机科学与技术带来微薄的帮助。还是那句话,计算机科学博大精深,I am just a beginner,不当之处希望大家批评指正。
  计算机科学与技术这一门科学深深的吸引着我们这些同学们,上计算机系已经有近三年了,自己也做了一些思考,原先不管是国内还是国外都喜欢把这个系分为计算机软件理论、计算机系统、计算机技术与应用。后来又合到一起,变成了现在的计算机科学与技术。我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术;每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括原先Major们自以为得意的程序设计),但计算机专业的优势是:我们掌握许多其他专业并不"深究"的东西,例如,算法,体系结构,等等。非计算机专业的人可以很容易地做一个芯片,写一段程序,但他们做不出计算机专业能够做出来的大型系统。今天我想专门谈一谈计算机科学,并将重点放在计算理论上。
1、计算机理论的一个核心问题--从数学谈起:
  [1]高等数学Vs数学分析       TOP     [发表评论]
  记得当年大一入学,每周六课时高等数学,天天作业不断(那时是六日工作制)。颇有些同学惊呼走错了门:咱们这到底念的是什么系?不错,你没走错门,这就是计算机科学与技术系。我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有多大的问题,但是做得不是那么尽如人意)。而计算机的理论研究,说到底了,如网络安全学,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系,虽然也许是正统数学家眼里非主流的数学。这里我还想阐明我的一个观点:我们都知道,数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标(至少我认为搞计算机科学与技术的应当本着这个方向)。
  其实我们计算机系学数学仅学习高等数学是不够的(典型的工科院校一般都开的是高等数学),我们应该像数学系一样学一下数学分析(清华计算机系开的好像就是数学分析,我们学校计算机学院开的也是,不过老师讲起来好像还是按照高等数学讲),数学分析这门科学,咱们学计算机的人对它有很复杂的感情。在于它是偏向于证明型的数学课程,这对我们培养良好的分析能力和推理能力极有帮助。我的软件工程学导师北工大数理学院的王仪华先生就曾经教导过我们,数学系的学生到软件企业中大多作软件设计与分析工作,而计算机系的学生做程序员的居多,原因就在于数学系的学生分析推理能力,从所受训练的角度上要远远在我们平均水平之上。当年出现的怪现象是:计算机系学生的高中数学基础在全校数一数二(希望没有冒犯其它系的同学),教学课时数也仅次于数学系,但学完之后的效果却不尽如人意。难道都是学生不努力吗,我看未见得,方向错了也说不一定,其中原因何在,发人深思。
  我个人的浅见是:计算机系的学生,对数学的要求固然跟数学系不同,跟物理类差别则更大。通常非数学专业的所?quot;高等数学",无非是把数学分析中较困难的理论部分删去,强调套用公式计算而已。而对计算机系来说,数学分析里用处最大的恰恰是被删去的理论部分。说得难听一点,对计算机系学生而言,追求算来算去的所谓"工程数学"已经彻底地走进了误区。记上一堆曲面积分的公式,难道就能算懂了数学?那倒不如现用现查,何必费事记呢?再不然直接用Mathematica或是Matlab好了。 退一万步讲,即使是学高等数学我想大家看看华罗庚先生的《高等数学导论》也是比一般的教材好得多。华罗庚在数学上的造诣不用我去多说,但是他这光辉的一生做得我认为对我们来说,最重要的几件事情: 首先是它筹建了中国科学院计算技术研究所,这是我们国家计算机科学的摇篮。在有就是他把很多的高等数学理论都交给了做工业生产的技术人员,推动了中国工业的进步。第三件就是他一生写过很多书,但是对高校师生价值更大的就是他在病期间在病床上和他的爱徒王元写了《高等数学引论》(王元与其说是他的爱徒不如说是他的同事,是中科院数学所的老一辈研究员,对歌德巴赫猜想的贡献全世界仅次于陈景润)这书在我们的图书馆里居然找得到,说实话,当时那个书上已经长了虫子,别人走到那里都会闪开,但我却格外感兴趣,上下两册看了个遍,我的最大收获并不在于理论的阐述,而是在于他的理论完全的实例化,在生活中去找模型。这也是我为什么比较喜欢具体数学的原因,正如我在上文中提到的,理论脱离了实践就失去了它存在的意义。正因为理论是从实践当中抽象出来的,所以理论的研究才能够更好的指导实践,不用于指导实践的理论可以说是毫无价值的。
  我在系里最爱做的事情就是给学弟学妹们推荐参考书。没有别的想法,只是希望他们少走弯路。中文的数学分析书,一般都认为以北大张筑生老师的"数学分析新讲"为最好。张筑生先生一生写的书并不太多,但是只要是写出来的每一本都是本领域内的杰作,这本当然更显突出些。这种老书看起来不仅是在传授你知识,而是在让你体会科学的方法与对事物的认识方法。万一你的数学实在太好,那就去看菲赫金哥尔茨?quot;微积分学教程"好了--但我认为没什么必要,毕竟你不想转到数学系去。吉米多维奇的"数学分析习题集"也基本上是计算型的书籍。书的名气很大,倒不见得适合我们,还是那句话,重要的是数学思想的建立,生活在信息社会里我们求的是高效,计算这玩意还是留给计算机吧。不过现在多用的似乎是复旦大学的《数学分析》,高等教育出版社的,也是很好的教材。
  中国的所谓高等代数,就等于线性代数加上一点多项式理论。我以为这有好的一面,因为可以让学生较早感觉到代数是一种结构,而非一堆矩阵翻来覆去。这里不得不提南京大学林成森,盛松柏两位老师编的"高等代数",感觉相当舒服。此书相当全面地包含了关于多项式和线性代数的基本初等结果,同时还提供了一些有用的又比较深刻的内容,如Sturm序列,Shermon-Morrison公式,广义逆矩阵等等。可以说,作为本科生如能吃透此书,就可以算是高手。国内较好的高等代数教材还有清华计算机系用的那本,清华出版社出版,书店里多多,一看就知道。从抽象代数的观点来看,高等代数里的结果不过是代数系统性质的一些例子而已。莫宗坚先生的《代数学》里,对此进行了深刻的讨论。然而莫先生的书实在深得很,作为本科生恐怕难以接受,不妨等到自己以后成熟了一些再读。
  正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩小了我们与数学系的同学之间思维上的差距。
  [2]计算数学基础      TOP     [发表评论]
  概率论与数理统计这门课很重要,可惜大多数院校讲授这门课都会少些东西。少了的东西现在看至少有随机过程。到毕业还没有听说过Markov过程,此乃计算机系学生的耻辱。没有随机过程,你怎么分析网络和分布式系统?怎么设计随机化算法和协议?据说清华计算机系开有"随机数学",早就是必修课。另外,离散概率论对计算机系学生来说有特殊的重要性。而我们国家工程数学讲的都是连续概率。现在,美国已经有些学校开设了单纯的"离散概率论"课程,干脆把连续概率删去,把离散概率讲深些。我们不一定要这么做,但应该更加强调离散概率是没有疑问的。这个工作我看还是尽早的做为好。
  计算方法学(有些学校也称为数学分析学)是最后一门由数理学院给我们开的课。一般学生对这门课的重视程度有限,以为没什么用。不就是照套公式嘛!其实,做图形图像可离不开它,密码学搞深了也离不开它。而且,在很多科学工程中的应用计算,都以数值的为主。这门课有两个极端的讲法:一个是古典的"数值分析",完全讲数学原理和算法;另一个是现在日趋流行的"科学与工程计算",干脆教学生用软件包编程。我个人认为,计算机系的学生一定要认识清楚我们计算机系的学生为什么要学这门课,我是很偏向于学好理论后用计算机实现的,最好使用C语言或C++编程实现。向这个方向努力的书籍还是挺多的,这里推荐大家高等教育出版社(CHEP)和施普林格出版社(Springer)联合出版的《计算方法(Computational Methods)》,华中理工大学数学系写的(现华中科技大学),这方面华科大做的工作在国内应算是比较多的,而个人认为以这本最好,至少程序设计方面涉及了:任意数学函数的求值,方程求根,线性方程组求解,插值方法,数值积分,场微分方程数值求解。李庆扬先生的那本则理论性过强,与实际应用结合得不太紧,可能比较适合纯搞理论的。
  [3]也谈离散数学    TOP    [发表评论]
  每个学校本系里都会开一门离散数学,涉及集合论,图论,和抽象代数,数理逻辑。不过,这么多内容挤在离散数学一门课里,是否时间太紧了点?另外,计算机系学生不懂组合和数论,也是巨大的缺陷。要做理论,不懂组合或者数论吃亏可就太大了。从理想的状态来看,最好分开六门课:集合,逻辑,图论,组合,代数,数论。这个当然不现实,因为没那么多课时。也许将来可以开三门课:集合与逻辑,图论与组合,代数与数论。(这方面我们学校已经着手开始做了)不管课怎么开,学生总一样要学。下面分别谈谈上面的三组内容。
  古典集合论,北师大出过一本《基础集合论》不错。
  数理逻辑,中科院软件所陆钟万教授的《面向计算机科学的数理逻辑》就不错。现在可以找到陆钟万教授的讲课录像, http://www.cas.ac.cn/html/Dir/2001/11/06/3391.htm自己去看看吧。总的来说,学集合/逻辑起手不难,普通高中生都能看懂。但越往后越感觉深不可测。
  学完以上各书之后,如果你还有精力兴趣进一步深究,那么可以试一下GTM系列中的《Introduction to Axiomatic Set Theory》和《A Course of Mathematical Logic》。这两本都有世界图书出版社的引进版。你如果能搞定这两本,可以说在逻辑方面真正入了门,也就不用再浪费时间听我瞎侃了。
  据说全中国最多只有三十个人懂图论。此言不虚。图论这门科学,技巧性太强,几乎每个问题都有一个独特的方法,让人头痛。不过这也正是它魅力所在:只要你有创造性,它就能给你成就感。我的导师说,图论里面随便找一块东西就可以写篇论文。大家可以体会里面内容之深广了吧!国内的图论书中,王树禾老师的"图论及其算法"非常成功(顺便推荐大家王先生的"数学思想史",个人认为了解科学史会对我们的学习和研究起到很大的推动作用)。一方面,其内容在国内教材里算非常全面的。另一方面,其对算法的强调非常适合计算机系(本来就是科大计算机系教材)。有了这本书为主,再参考几本翻译的,如Bondy & Murty的《图论及其应用》,人民邮电出版社翻译的《图论和电路网络》等等,就马马虎虎,对本科生绝对足够了。再进一步,世界图书引进有GTM系列的"Modern Graph Theory"。此书确实经典!国内好象还有一家出版了个翻译版。不过,学到这个层次,还是读原版好(说实话,主要是亲身体验翻译版的弊端,这个大家自己体会)。搞定这本书,也标志着图论入了门。
  离散数学方面我们北京工业大学实验学院有个世界级的专家,叫邵学才,复旦大学概率论毕业的,教过高等数学,线性代数,概率论,最后转向离散数学,出版著作无数,论文集新加坡有一本,堪称经典,大家想学离散数学的真谛不妨找来看看。这老师的课我专门去听过,极为经典。不过你要从他的不经意的话中去挖掘精髓。在同他的交谈当中我又深刻地发现一个问题,虽说邵先生写书无数,但依他自己的说法每本都差不多,我实在觉得诧异,他说主要是有大纲的限制,不便多写。这就难怪了,很少听说国外写书还要依据个什么大纲(就算有,内容也宽泛的多),不敢越雷池半步,这样不是看谁的都一样了。外版的书好就好在这里,最新的科技成果里面都有论述,别的先不说,至少?quot;紧跟时代的理论知识"。
  原先离散数学和数据结构归在一起成为离散数学结构,后来由于数据结构的内容比较多,分出来了,不过最近国外好像有些大学又把它们合并到了一起,道理当然不用说,可能还是考虑到交叉的部分比较多。比较经典的书我看过得应算是《Discrete Mathematical Structures》了,清华大学出版社有个影印版的。
  [4]续谈其他的一些计算数学      TOP    [发表评论]
  组合数学我看的第一本好像是北大捐给我们学院的,一本外版书。感觉没有太适合的国产书。还是读Graham和Knuth等人合著的经典"具体数学"吧,西安电子科技大学出版社有翻译版。
  《组合数学》,《空间解析几何》还有那本《拓扑学》,看这三本书的时候是极其费事的,原因有几点,首先是这三本书无一例外,都是用繁体字写的,第二就是书真得实在是太脏了,我在图书馆的座位上看,同学们都离我做得很远。我十分不自然,不愿意影响同学,但是学校不让向外借这种书(呵呵,说起这是也挺有意思,别人都不看这种书,只有我在看,老师就特别的关注我,后来我和他讲了这些书的价值,他居然把他们当作是震馆之宝,老师都不许借,不过后来他们看我真得很喜欢看,就把书借给了我,当然用的是馆长的名义借出去的。)不过收获是非常大的,再后来学习计算机理论时里面的很多东西都是常会用到的。当然如果你没看过这些书绝对理解不到那个层次。拿拓扑学来说,我们学校似乎是美开设这门课程,但是这门课程的重要性是显而易见的,没有想到的是在那本书的很多页中都夹着一些读书笔记,而那个笔记的作者及有些造诣,有些想法可以用到现代网络设计当中。
  抽象代数,国内经典为莫宗坚先生的《代数学》。此书听说是北大数学系教材,深得好评。然而对本科生来说,此书未免太深。可以先学习一些其它的教材,然后再回头来看"代数学"。国际上的经典可就多了,GTM系列里就有一大堆。推荐一本谈不上经典,但却最简单的,最容易学的: http://www.math.miami.edu/~ec/book/这本"Introduction to Linear and Abstract Algebra"非常通俗易懂,而且把抽象代数和线性代数结合起来,对初学者来说非常理想,我校比较牛的同学都有收藏。
  数论方面,国内有经典而且以困难著称摹冻醯仁�邸?(潘氏兄弟著,北大版)。再追溯一点,还有更加经典(可以算世界级)并且更加困难的"数论导引"(华罗庚先生的名著,科学版,九章书店重印,繁体的看起来可能比较困难)。把基础的几章搞定一个大概,对本科生来讲足够了。但这只是初等数论。本科毕业后要学计算数论,你必须看英文的书,如Bach的"Introduction to Algorithmic Number Theory"。
  计算机科学理论的根本,在于算法。现在很多系里给本科生开设算法设计与分析,确实非常正确。环顾西方世界,大约没有一个三流以上计算机系不把算法作为必修的。算法教材目前公认以Corman等著的《Introduction to Algorithms》为最优。对入门而言,这一本已经足够,不需要再参考其它书。 深一点的就是大家作为常识都知道的TAOCP了。即是《The Art of Computer Programming》3册内容全世界都能看下来的本身就不多,Gates曾经说过"若是你能把这书上面的东西都看懂,请把你的简历发给我一份"我的学长司徒彦南兄就曾千里迢迢从美国托人买这书回来,别的先不说,可见这书的在我们计算机科学与技术系中的分量。
   

有用计算机编程大部分是用数学内容

有用,以后在计算及某些方面有极大的用处




有用 因为电脑编程时 要用到

高代和高数有区别吗
相比之下,数学分析与高等代数则更多地为数学专业学生设计,它们不仅深入探讨了微积分与线性代数的基础理论,还涉及到了实变函数、复变函数、抽象代数等更高级的内容。数学分析着重于理论的严谨性和逻辑推理,而高等代数则更注重代数结构与代数运算的系统性。因此,虽然高等数学和线性代数对于理工科学生来说...

高等数学,线性代数,复变函数问题
高等数学上下册,线性代数是基础,学完才能学复变函数,应用很多,对于机械,电气方面的专业 高等数学上下册,线性代数必学,复变函数可选学,

大家能给一个自学数学系的所有数学课程的,先后顺序么
大学数学课程体系大致包括微积分、线性代数、概率论和数理统计、复变函数、离散数学等核心内容。工科学生主要学习前四门课程,而对于计算科学或数学系学生,所有课程均需掌握。一般理科、经济类学生需要学习微积分、线性代数与概率论,文科类学生则仅需学习微积分的浅层知识。课程学习顺序可参考如下:首先,微...

高数,线代,复变函数,概率论难度怎么排
这么说吧,我以自己的经验来说,高数是其他所有数学的基础,难度由浅入深,后期学习最好可以结合线代~~。线代可以与高等数学同时开始学,互不矛盾,但理解起来难度比高数大很多。概率论中有很多部分用到了高数积分部分的知识,要求层次居中,但高数学不好积分部分的话很难理解而且算不对。复变函数也是...

可以先学复变函数与积分变换再学线性代数么?两门课有关联么?
完全可以的,复变函数和积分变换 与线性代数没有什么太大的联系,但是复变函数积分换和高数联系比较大,简单的说,你可以理解为把高数实域情况推广到复域 就是复变函数了,当然事实上并不是这么简单的。复变函数和积分变换在很多专业课上应该很广泛,好好学吧 ...

数一和数二的区别
数一和数二的重要性 一、基础知识 数一是针对高中阶段的数学学科,它涵盖了初等代数、平面几何、函数与方程等基础知识,这些知识是数学学科体系的基础,对于学生建立数学的基本概念和思维方式有着至关重要的作用。数二则是针对部分高校自主设置的数学专业课,主要考察复变函数、常微分方程、偏微分方程等高级...

怎么学好复变函数
不过,《复变函数》是一门纯理论课,在某种程度上而言,比前几门数学课,如《高数》、《线性代数》、《概率论》都要枯燥一些,理论上的推导似乎漫无目标,因此,在学习的过程中,把握重点,看准目标尤为重要。在学习《复变函数》的过程中,我认为了解复变函数的用途是十分必要的,这门课程主要分为...

复变函数主要有什么用
在计算反馈电路中,电容电感的引入可能会使信号相位发生180度的平移,从而导致负反馈变成正反馈,最终可能导致系统崩溃。这体现了复变函数在实际应用中的重要性。对于本科生来说,理解复变函数、线性代数、偏微分方程(即数理方程)以及概率论等概念可能并不直观,直到研究生阶段才发现这些工具对解决实际问题...

高数难还是考研数学难啊
高考数学和考研数学都有一定的难度,但是各自的难点不太相同。区别如下:1、考试内容异同:高考数学需要掌握初高中的数学知识,而且重点是对数、三角函数、函数、解析几何和数列等内容的掌握;考研数学则进一步深入了线性代数、概率论、数学分析和复变函数等内容,难度相对于高考在理论和实战方面更高。2、考试...

经济数学高数
如下图所示,主要是行变换解方程: