世界顶级未解数学难题都有哪些?
哥德巴赫猜想
“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想共七个,其中一个,庞加莱猜想已经被解决,
1、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
2、庞加莱猜想(Poincaré conjecture):
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
3、黎曼假设:
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。
在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。
黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。
4、杨-米尔斯(Yang-Mills)存在性和质量缺口:
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。
尽管如此,他们的既描述重粒子、又在数学上严格的方程,并没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
扩展资料:
周氏猜测:
当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是素数。
周海中还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。
关于梅森素数的分布研究,英国数学家香克斯、德国数学家伯利哈特、印度数学家拉曼纽杨和美国数学家吉里斯等曾分别提出过猜测,但他们的猜测有一个共同点,就是都以近似表达式提出;而它们与实际情况的接近程度均难如人意。
唯有周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了著名的数学难题。
美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
参考资料:
百度百科--数学难题
世界近代三大数学难题之一四色猜想
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
--------
世界近代三大数学难题之一 费马最后定理
被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有
关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『
我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的
男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马
小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极
大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子
」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的
数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内
容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定
理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之
两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有
整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等。
费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法
找到整数解。
当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙
法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百
多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最
后定理也就成了数学界的心头大患,极欲解之而后快。
十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和
三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫
斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,
有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然
如此仍然吸引不少的「数学痴」。
二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的
,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确
的(注286243-1为一天文数字,大约为25960位数)。
虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解
决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是
利用二十世纪过去三十年来抽象数学发展的结果加以证明。
五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志
村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德
国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联
论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论
由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报
告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的
证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以
修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6
月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金
,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。
要证明费马最后定理是正确的
(即xn + yn = zn 对n33 均无正整数解)
只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。
----------------
世界近代三大数学难题之一 哥德巴赫猜想
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
。
。
。
。
。
。
先做这三道
数学上的难题很多很多,有很多数学难题几百年都没有得到解决。而数学家们也在不断探索和冲锋,以求解决这些问题。问题的提出是富有意义的,问题的探索和解决过程也是极富意义的。下面列了几个猜想,欢迎大家一起交流和讨论。
哥德巴赫猜想
等级:五颗星,数学王冠上的钻石;
内容:哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。
进展:1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”。
黎曼猜想
等级:五颗星,巍峨山峰,屹立不倒;
内容:黎曼函数的所有的非平凡零点,实部都是1/2。1859年,黎曼被选为了柏林科学院的通信院士,之后他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
进展:黎曼猜想自 “诞生”以来,已过了160个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。
费马大定理
等级:五颗星,困惑了世间智者358年的迷;
内容:1637年,法国业余数学家费马在研读丢番图的《算术》时,在书上写了短短的几行,大意为:除平方之外,任何次幂都不能拆分为两个同次幂之和。我已经找到了一个绝妙的证明,但书边空白过窄,写不下。
进展:这个恶作剧式的问题就是著名的费马大定理,这个谜题困惑了数学界整整358年之久,在这期间大名鼎鼎的数学家欧拉、高斯、柯西、勒贝格等人都有过不同的尝试,但均未成功。直到1994年,由英国数学家安德鲁-怀尔斯解决。
孪生素数猜想
等级:五颗星,数论史上的经典难题,171岁“高龄”了;
内容:在1849年,阿尔方·德·波利尼亚克提出了一般的猜想:对所有自然数k,存在无穷多个素数对(p, p + 2k)。k = 1的情况就是孪生素数猜想。孪生素数就是指相差2的素数对,例如3和5,5和7,11和13…。这个猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
进展:2013年4月17日,数学家张益唐将论文投给世界数学界最负声誉的《数学年刊》(Annals of Mathematics),在张益唐的论文中,他给出的结果是,存在无数对相邻素数,它们的差相差不过7000万。但这只是一个估计,并非张益唐的方法能得到的最好结果。在论文出炉后,一些数学家吃透了新方法,开始试着改进这个常数,进一步拉近了与最终解决孪生素数猜想的距离。在2014年2月,张益唐的七千万已经被缩小到246。
庞加莱猜想:
等级:五颗星;
内容:1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现其中的错误,修改为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
通俗易懂的语言描述这个问题就是:上图中的小球,我们用一根绳子套住,绳子的两端在黄点位置相遇,如果在黄点用力向左右两端拉绳子,会发现绳子套的圈在慢慢缩小,最后可以缩小到一个点,将绳子收回。
进展:大于等于五维的庞加莱猜想被斯蒂芬·斯梅尔证明;四维的庞加莱猜想被迈克尔·弗里德曼证明;三维的庞加莱猜想被俄罗斯数学家佩雷尔曼于2002-2003年证明。他们分别获得1966年,1986年和2006年菲尔兹奖。2006年8月,有着数学界诺贝尔奖之称的“菲尔兹奖”,授予了佩雷尔曼,以表彰他在几何学上的贡献。一枚印有阿基米德浮雕头像的奖章和约1.35万美元的奖金,同样被拒之门外。对此,他给出的理由是“没有路费来领奖”。
(转自头条号-数学经纬网)
没有数学十大未解难题这一提法,楼上所提之费尔马大定理和四色猜想都已解决,只有七大未解难题.
美国克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。
一.庞加莱猜想,任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球
六大世纪难题仍然待解
二.NP完全问题
如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器验证这是对的。很快用内部结构来验证一个答案,还是花费大量的时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文?考克(StephenCook)于1971年陈述的。
三, 霍奇(Hodge)猜想
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
四,黎曼(Riemann)假设
著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1500000000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
五, 杨-米尔斯(Yang-Mills)理论
大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
六,纳维叶-斯托克斯(Navier-Stokes)方程
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可通过理解纳维叶-斯托克斯方程的解,来对其进行解释和预言。
七,贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
使用我的大脑 思考问题的时候感觉 好像没有阻力 没有阻碍的
好像一切都是水到继承!!
石斛全部都是自然而然!!
我已经把好几个你们认为是数学顶级的难题 解决了啊
为什么还是不给我工作!!
世界上有哪些至今没有解决的数学难题
6. 黎曼猜想:黎曼猜想关注的是黎曼ζ函数在s=1时的零点。这个猜想至今未解,但它与数论函数、经济社会等多个领域潜在的联系使得它备受关注。据说,纳什曾在解决这个问题时精神失常。7. 角谷猜想:这个猜想涉及一个自然数,如果它是偶数,就除以2;如果它是奇数,就乘以3并加1。最终,这个数总会归结...
世界十大数学猜想?
数学世界十大难题:1、科拉兹猜想 科拉兹猜想又称为奇偶归一猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。2、哥德巴赫猜想 哥德巴赫猜想是数学界中存在最久的未解问题之一。它可以表述为:任一大于2的偶数,都可表示成两个素数...
世界难题数学未解
庞加莱猜想是拓扑学的一个难题,它询问三维球面是否可以通过单连通性来唯一确定。这个问题自1904年由法国数学家庞加莱提出以来,一直困扰着数学家们,直至2002年被俄罗斯数学家格里戈里·佩雷尔曼证明。4. 黎曼假设 黎曼假设是数论中的一个重要问题,由德国数学家黎曼于1859年提出。它关注的是素数分布与黎...
15个数论难题,解决任意一个都能让你称为顶级大佬 | 哆嗒数学网
4、孪生质数猜想:存在无穷多对相差2的素数对。尽管找到了许多对满足条件的孪生质数,但证明这一猜想仍是个未解之题。5、梅森质数猜想:形如2^n-1的数中存在无穷多个素数。这一猜想至今已验证数百个梅森数,但其是否真的无穷多仍是个未知。6、n^2+1猜想:存在无穷多个自然数n,使得n^2+1为素...
世界三大未解数学难题是什么?
1、霍奇猜想(Hodge conjecture):二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学...
世界一共有几大数学难题?拜托各位大神
世界上的数学难题众多,以下是一些著名的未解之谜:1. P问题对NP问题:这是计算机科学中的一个基本问题,询问是否所有的NP问题都可以在多项式时间内解决。2. 霍奇猜想:这是代数几何领域的一个基本问题,涉及到复数多项式方程定义的几何形状的性质。3. 庞加莱猜想:这是拓扑学的一个核心问题,关于三维...
世界数学未解的难题有哪些
六、纳维叶-斯托克斯方程:无论是微风还是湍流,数学家和物理学家都相信,通过理解纳维叶-斯托克斯方程的解,我们可以对其进行解释和预言。七、贝赫和斯维讷通-戴尔猜想:当解为一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个相关的蔡塔函数z(s)在点s=1附近的性质...
数学上有什么未解之谜
世界有七大数学难题,目前已经解决庞加莱猜想和黎曼假设,其余难题如下:1、NP完全问题:是不确定性图灵机在P时间内能解决的问题,是NP类中“最难”的问题,即它们是最可能不属于P类的,这是因为任何NP中的问题可以在多项式时间内变换成为任何特定NP完全问题的一个特例;2、霍奇猜想:是代数几何的一个...
数学界三大难题?有哪些?
你提到的数学界的三大难题确实是指近代数学中的三个著名未解问题:1. 哥德巴赫猜想:这个猜想由哥德巴赫在1742年提出,它假设每一个大于2的偶数都可以表示为两个素数之和。例如,4=2+2,6=3+3,8=5+3等。尽管这个猜想已经得到了大量的数学家的研究和部分验证,但是对于所有的偶数是否都符合这个猜想...
世界十大数学难题
10. 贝赫-斯维讷通-戴尔猜想:代数几何的神秘联结最后,代数几何中的这一猜想,揭示了模形式与椭圆曲线之间深邃的联系,如同一条无形的数学纽带,编织着数学的宇宙图景。这些数学难题,既是挑战,也是探索,它们构成了数学的壮丽景观,等待着一代又一代的勇士去征服,去揭示其中的奥秘。