三角形的中心,重心,内心,外心有什么区别
在初中数学的学习过程中,三角形的相关知识是非常重要的内容。而在三角形的相关知识当中,三角形的内心、外心、垂心和重心、中心,是很多学生特别容易混淆的内容。那么到底该如何区分学习三角形的“五心”了?下面给大家具体讲讲。
三角形的内心是由三角形的三个内角平分线相交形成的交点。同时,三角形的内心也是这个三角形内切圆的圆心,三角形的内心到三角形的三条边距离都是相等的。
三角形的外心是三角形的三边的垂直平分线形成的交点。三角形的外心同时也是这个三角形外接圆的圆心。
三角形的的垂心是由三角形的三条边及其延长线上的高组成的交点。不同的三角形垂心的位置也有所不同,直角三角形的垂心在斜边的中点上,钝角三角形的垂心在三角形外面,锐角三角形垂心在三角形内部。
三角形的重心是由三角形的三条边的中线组成的交点。三角形的重心到顶点的距离与三角形的顶点到对边中点的距离比值为2:1。
三角形的中心也是一个比较特殊的交点,只有在正三角形中,三角形的重心、内心、外心和垂心全部交于一点时,这个交点才被称为三角形的中心。中心在其他的三角形中是不存在的。
在学习三角形的重心、垂心、内心和外心以及中心时,是要结合对应的三角形图形来记忆区分。先记住各自的特点,再记忆各自的不同,区别记忆“五心”。
1、三角形三条中垂线的交点叫外心,即外接圆圆心。
2、三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
3、三角形三条高的交点叫垂心。
4、三角形三条中线的交点叫重心。
5、仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形垂心定义
垂心是从三角形的各个顶点向其对边所作的三条垂线的交点。
锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。
1、三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
2、三角形的重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍。重心分中线比为1:2。
3、三角形的内心:三条角平分线的交点,是三角形的内切圆的圆心的简称。到三边距离相等。
4、三角形的外心:三条中垂线的交点,是三角形的外接圆的圆心的简称。到三顶点距离相等。
扩展资料:
一、三角形的五心:三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
二、三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心, 五心性质很重要,认真掌握莫记混。
1、重 心
三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好。
2、外 心
三角形有六元素,三个内角有三边. 作三边的中垂线,三线相交共一点。
此点定义为外心,用它可作外接圆. 内心外心莫记混,内切外接是关键。
3、垂 心
三角形上作三高,三高必于垂心交. 高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形, 四点共圆图中有,细心分析可找清。
4、内 心
三角对应三顶点,角角都有平分线, 三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆, 此圆圆心称“内心”,如此定义理当然。
五心性质别记混,做起题来真是好。
参考资料:
百度百科-三角形中心
百度百科-三角形五心定律
三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形的重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍。重心分中线比为1:2。
三角形的内心:三条角平分线的交点,是三角形的内切圆的圆心的简称。到三边距离相等。
三角形的外心:三条中垂线的交点,是三角形的外接圆的圆心的简称。到三顶点距离相等。
重心到顶点的距离与重心到对边中点的距离之比为2∶1。
重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
重心到三角形3个顶点距离的平方和最小。
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
计算外心的重心坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
三角形的三条内角平分线交于一点。该点即为三角形的内心。
直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。
P为ΔABC所在平面上任意一点,点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c)
扩展资料
重心的性质:
三角形外接圆的圆心,叫做三角形的外心 外心的性质:
外心到三顶点的距离相等 三角形内切圆的圆心,叫做三角形的内心 内心的性质:
自然是有区别的,具体如下:
三角形的中心:当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形的重心:是三角形三条中线的交点
三角形的内心:是三角形三条内角平分线的交点 即内接圆的圆心
三角形的外心:是三角形三条边的垂直平分线的交点 即外接圆的圆心
三角形有五颗心;重、垂、内、外和旁心,
五心性质很重要,认真掌握莫记混.
重 心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂 心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清.
内 心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外 心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
按照这个自行画画图,对照上面别人的解释体会一下.
重心是中线交点,内心是角平分线交点(或内切圆的圆心),
外心是中垂线交点(或外接圆的圆心),垂心是高线交点,
这称三角形的四心.
还有一个心叫傍心:外角平分线的交点(有3个),(或傍切圆的圆心)
只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.
重心是三条中线的交点,交点把每条中线截成两段,这两段中长的一段比短的一段=2:1,所以整条中线比短的那段就是3:1
垂心顾名思义是三条高的交点,一般锐角三角形的垂心没有什么特点,只是三条高会交于一点而已,钝角三角形的垂心在三角形外(三条高所在直线的交点),直角三角形的重心在直角顶点.
中心.. 三角形没有这个心吧..
内心是三条角平分线的交点,所有三角形的内心均在三角形内部(所以叫内心) 特点是到三边的距离相等.
外心是三条边的垂直平分线的交点,特点是到三个顶点的距离相等.等腰直角三角形的外心在斜边的重点,锐角三角形的外心在三角形外部.
注意:等边三角形的重心,垂心,内心是同一点.
中心、重心、垂心、内心、外心分别指什么
1. 重心:在三角形中,重心是三条中线的交点,它将每条中线分为两部分,长度比为2:1。2. 垂心:垂心是三角形三条高的交点。每条高都是从顶点到对边所在直线的垂线段。3. 中心:在正三角形中,重心、垂心、外心、内心是同一个点。这个点同时也是正三角形的外接圆心。4. 外心:外心是三角形三条...
怎样区别三角形的重心,垂心,中心,内心,外心
内心是三条角平分线的交点,它到三边的距离相等。 外心是三条边垂直平分线的交点,它到三个顶点的距离相等。 重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。 垂心是三条高的交点,它能构成很多直角三角形相似。 旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它...
数学立体几何中三角形的垂心、中心、内心、重心、外心,各是什么的...
一、重心是三条中线的交点,它到三角形三边的距离相等,且到三顶点的距离是它到对边中点的距离的两倍。二、内心是角平分线的交点,也是三角形内切圆的圆心,它到三角形三边的距离相等。三、外心是三条边垂直平分线的交点,也是三角形外接圆的圆心,它到三角形三个顶点的距离相等。四、垂心是三条高...
三角形的外心、内心、中心、重心、垂心各是什么?
1. 重心是三角形三条中线的交点,它将中线的每一条分成两部分,长度比为2:1。2. 内心是三角形三个角平分线的交点,或者是内切圆的圆心。它到三角形三边的距离相等。3. 外心是三角形三条中垂线的交点,或者是外接圆的圆心。它到三角形三个顶点的距离相等。4. 垂心是三角形三条高线的交点。高线...
三角形的中心,重心,内心,外心有什么区别
重心:是三条中线的交点 外心是:三条边的垂直平分线的交点 内心:是三个角的平分线的交点
请问三角形的中心、重心、垂心、外心、内心各是什么意思?
三角形的重心是三角形顶点与对边中点的连线交点。垂心是三角形各边上的高线交点。外心是三角形各边上的垂直平分线交点。内心是三角形三内角平分线交点。在正三角形中,重心、垂心、外心、内心重合,称为中心。三角形的重心将中线分成两段,长度比为2:1。垂心是三角形三高线的交点,这些高线将三角形...
三角形的中心,重心,内心,外心有什么区别
三角形的中心:当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。三角形的重心:是三角形三条中线的交点 三角形的内心:是三角形三条内角平分线的交点 即内接圆的圆心 三角形的外心:是三角形三条边的垂直平分线的交点 即外接圆的圆心 ...
什么叫三角形的重心、内心、外心、垂心、中心?有什么特点么?
内心:三角形的三内角平分线交于一点。(内心定理)外心:三角形的三边的垂直平分线交于一点。(外心定理)中心:等边三角形的内心.外心.垂心.重心重合.则特指等边三角形的这个重合点垂心:三角形的三条高交于一点。(垂心定理)重心:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离...
中心,重心,垂心,外心,内心,各是什么?
中心,重心,垂心,外心,内心,各是什么如下:外心:三角形外接圆的圆心,是三角形三边垂直平分线的交点.内心:三角形内接圆的圆心,是三角形的三个内角平分线的交点.中心:正多边形(如等边三角形)的外心、内心互相重复,也叫中心,是正多边形的旋转中心.重心:三角形三边中线的交点.垂心:三角形三条高的...
三角形的中心,重心,内心,外心有什么区别
重心:是三条中线的交点 外心是:三条边的垂直平分线的交点 内心:是三个角的平分线的交点 只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.