找中国数学发展史宋元数学的论文
秦九韶(公元1202-1261),字道古,四川安岳人。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。他的著作《数学九章》创造了“大衍求一术”,这在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用。他还提出了“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都涉及到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年。
李冶(1192-1279)是中国古代数学家,字仁卿,号敬斋,真定府栾城县(今河北省栾城县)人。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成了数学史上的不朽名著《测圆海镜》。
杨辉,中国南宋时期杰出的数学家和数学教育家。他在13世纪中叶活动于苏杭一带,其著作甚多。他著名的数学书共五种二十一卷。他的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。
宋元数学,从时间上说它包括由北宋到元末大约四百年的时间。在此期间,涌现出了许多优秀的数学家,其中最卓越的代表,如通常所说的“宋元四大家”的杨辉、秦九韶、李冶、朱世杰等,在数学史占有重要的地位。同时期的欧洲正处在中世纪,中国数学家的光辉灿烂成就,在部分问题的解决上,远远走在世界前列。
有名的数学家及其著作 张丘建--《张丘建算经》 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西《算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)
找中国数学发展史宋元数学的论文
宋元数学,从时间上说它包括由北宋到元末大约四百年的时间。在此期间,涌现出了许多优秀的数学家,其中最卓越的代表,如通常所说的“宋元四大家”的杨辉、秦九韶、李冶、朱世杰等,在数学史占有重要的地位。同时期的欧洲正处在中世纪,中国数学家的光辉灿烂成就,在部分问题的解决上,远远走在世界前列。
数的发展史
1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高...
中国数学的发展历史的论文
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:...
中国宋元数学发展史 论文
春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱...
《中国数学发展史-宋元数学》的历史资料
朱世杰,字汉卿,燕山(今北京一带)人。在14世纪初,他将解一个未知数方程的天元术,发展成了有四个未知数的方程组的解法———四元术;他还将三角垛的公式引用到招差术中,得到包含四次差的招差公式,并且可以推广到任意高次。朱世杰对球体表面积问题也作过探讨,虽然未成功,却是中国数学史上...
最近要赶一篇关于数学发展史的论文(高中滴),现在急需论文资料。求关于数...
发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。 在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代...
中国数学发展史结题报告
【关键词】中国数学;数学发展史;数学思想一、中国数学的发展历程1.1中国数学的起源与早期发展据《易·系辞》记载:上古结绳而治,后世圣人易之以书契。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的...
中国古代数学辉煌史
用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号 ,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今 ,并对这一杰出创造进行系统论述的...
钱宝琮主要论著
5.《算经十书》,1963年北京中华书局出版。此书是钱宝琮校点的中国古代数学经典。6.《钱宝琼科学史论文选集》,1983年北京科学出版社出版。此书汇集了钱宝琼在科学史领域的多篇论文。7.《宋元数学史论文集》,1966年北京科学出版社出版。此书收录了钱宝琮关于宋元数学史的研究论文。8.《百衲本宋书历...
中国传统数学自元末以后逐渐衰微的原因?
可见儒家学说的统治,排挤和阻碍了科学、技术、艺术,当然也包括数学的发展,应该说是自古如此,似不能作为宋元以后数学中衰的根本原 因。有的人归罪于中国古代数学本身所固有的缺陷。譬如,指中国古代数学家只注重具体数字、中国数学家从未自发地发明任何记录公式的符号方法等等。所有这些论点都可以考虑。