初三数学二次函数知识点有哪些
初三数学二级函数有哪些知识点呢?想要了解的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“初三数学二次函数知识点有哪些”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
初三数学二次函数知识点有哪些
二次函数介绍
二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次函数表达式是什么
(一)顶点式
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
(二)交点式
y=a(x-x₁)(x-x₂)[仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]
函数与图像交于(x₁,0)和(x₂,0)
(三)一般式
y=aX²+bX+c=0(a≠0)(a、b、c是常数)
二次函数图像的对称关系
(一)对于一般式:
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。
③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。
④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)。
(二)对于顶点式:
①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。
求二次函数解析式的方法
(一)条件为已知抛物线过三个已知点,用一般式:y=ax²+bx+c,分别代入成为一个三元一次方程组,解得a、b、c的值,从而得到解析式。
(二)已知顶点坐标及另外一点,用顶点式:y=a(x-h)²+k,点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到解析式。
(三)已知抛物线过三个点中,其中两点在X轴上,可用交点式(两根式):y=a(x-x₁)(x-x₂),第三点坐标代入求a,得抛物线解析式。
二次函数的性质
(一)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(二)二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
(三)一次项系数b和二次项系数a共同决定对称轴的位置。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
拓展阅读:中考数学备考方法有哪些
1、中考数学试题的新颖性、灵活性越来越强。
不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的复习。复习中首先给出概念、公式、定理,然后讲几道例题,就通过大量的题目来训练。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理。结果是“悟”不出方法、规律,理解肤浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化,从而造成失分。
2、以课本为主,从教科书中寻找中考题的“影子”。
许多试题的构成是在教科书中的例题、习题的基础上通过类比、加工改造、加强条件或减弱条件、延伸或扩展而成的,所以在复习的第一阶段,应以新课程标准为依据,以教科书为蓝本进行基础知识的复习。
3、突出复习的特点。
从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,应让学生按照自己的实际查漏补缺,有目的地自由复习。然后让学生通过恰当的训练,加强对概念的理解、结论的掌握、方法的运用和能力的提高。进而达到培养学生的抽象思维能力。
4、梳理知识,加强变式训练。
中考命题是“依据课标,紧扣课本”的,试卷中的.许多题目是以课本中的例题和习题为例加以变化而来的。因此无论什么复习资料都不能代替教材,只有认真地复习教材中的基础知识,掌握基本技能,同时对课本的典型题目做一些变式练习,才能灵活掌握双基,中考中才能正确解答试题。在进行双基复习时,要对课本知识进行梳理,重点知识在梳理中同时加强变式训练,常用辅助教学方法,常用辅助线进行整理,以求熟练掌握。
5、理清脉络抓基础。
复习中要紧扣教材,夯实基础,以基础题型的复习和基本数学思想、数学方法等的训练为主,穿插少量的综合复习,同时关注新学的知识,对课本知识进行系统梳理,形成知识网络,对典型问题进行变式训练,达到举一反三触类旁通的目的,做到以不变应万变,提高应试能力。
6、分别对待各有侧重。
复习中,学生要针对自己掌握知识的情况进行有针对性的复习。如果是学习一般的学生,要对自己严格要求,解题严密、细心;学习拔尖的学生,在复习中不妨加强习题训练,在解题过程中注重逻辑关系。另外还要针对知识点的难易程度,在中考中所占的比例,有区别、侧重的重点复习。同时,有目的地进行纠错训练,分析易错问题。
中考数学选择题答题技巧有哪些
一、排除选项法
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
二、赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
三、通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
四、直接求解法
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
五、待定系数法
要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
六、不完全归纳法
当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
二次函数知识点该怎么归纳?
3.图像:二次函数的图像是一个开口向上或向下的抛物线,其顶点坐标为(-b\/2a,f(-b\/2a))。4.解析式:二次函数的解析式可以通过顶点坐标公式、对称轴公式、零点公式等方法求得。5.应用:二次函数在实际生活中有很多应用,例如物体的自由落体运动、抛物线形的桥梁设计等。以上就是对二次函数知识点的...
二次函数的重点、基础、难点。
二次函数是数学中一个重要的知识点,其表达式为f(x)=ax^2+bx+c(a≠0)。它描述了一种特殊的曲线——抛物线,其图像的主轴平行于y轴。二次函数的解析式有多种形式,如一般式y=ax^2+bx+c、顶点式y=a(x-h)^2+k,以及交点式y=a(x-x1)(x-x2)。其中,顶点式中的顶点坐标为(h,k)...
谁有初三数学二次函数的详细讲解???
三是将二次函数与圆、三角形结合 中考考试通常会有一道大题是二次函数的题型就是后面那三种 但是要想学好二次函数一定要从基础抓起,牢牢掌握有关的性质及公式。在此基础上,想把后三种题型学好就必须将一次函数和圆的有关性质也牢牢掌握。建议多做些题,先从基础来,在做综合题!这类题分数不低...
初三二次函数知识点总结
(3)抛物线y=ax2+c与y=ax2的关系.抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.以上就是我为大家总结的初三 数学 二次函数知识点,仅供参考,希望对大家有所帮助。
二次函数的初三数学知识点归纳
3. y=ax20)的特性:当y=ax2+bx+c (a0)中的.b=0且c=0时二次函数为y=ax20);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、...
二次函数知识点总结(实用3篇)
二次函数知识点总结(3)二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线,是数学知识中的重点。以下是二次函数的知识点总结。定义与定义表达式:二次函数由自变量x和因变量y之间的关系y=ax^2+bx+c定义(a,b,c为常数,a≠0),其中a决定函数的开口方向,a>0时开口向上,a<0时开口...
初三数学二次函数常见知识点整理
想要学好数学知识点是很重要的,下面我就大家整理一下初三数学二次函数常见知识点整理,仅供参考。二次函数定义 定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠...
初三数学二次函数重要知识点整理
数学的二次函数是非常重要的,下面我就大家整理一下初三数学二次函数重要知识点整理,仅供参考。二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x...
二次函数知识点总结
9. 常见的二次函数:y = x^2(抛物线的最简单形式);y = ax^2 + bx + c(一般的二次函数);y = a(x-h)^2 + k(平移后的二次函数)。总结:二次函数是一种重要的函数类型,在数学和物理问题中广泛应用。熟练掌握二次函数的图像特征、根的性质、平移变换等知识点,有助于理解和解决...
初三学二次函数的窍门
初三学二次函数的窍门,相关内容如下:二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)是初中数学学习的重点,同时也是难点,其知识点比较多,又不大容易理解和记忆。在学习中需要理解和熟记的内容有 1.定义:形如y=ax2+bx+c(a、b、c是常数,且a≠0)的函数叫做二次函数。2.图象:是一条...