中西方数学发展史上有什么不同的特点

供稿:hz-xin.com     日期:2025-01-15
中西方数学发展史上有什么不同的特点?

中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。

东方数学(以中国古代数学为代表)主要特征:1具有实用性,较强的社会性;2算法程序化;3. 寓理于算。
西方数学主要特征:1封闭的逻辑演绎体系;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义。
下面这部分转自吴文俊院士,我很同意他的观点,你不妨看看,希望对你有所帮助。
一提到科学或者数学,脑子里想到的就是以欧美为代表的西方科学和数学。我要讲的是,除了以西方为代表的科学和数学之外,事实上还有跟它们完全不同的所谓东方科学与数学。这个意见也不是我第一次这样讲,在《中国科学技术史》这一宏篇巨著里面就已经介绍了这一点。李约瑟在著作里讲,东方不仅有科学和数学,而且跟西方走的是完全不同的道路,有不同的思想方法。究竟怎么不一样呢?

所谓东方数学,就是中国的古代数学及印度的古代数学。东西方数学的异同,也就是现在欧美的数学跟东方数学(主要是古代的中国数学)有什么异同。我们学现代数学(也就是西方数学),主要内容是证明定理;而中国的古代数学根本不考虑定理不定理,没有这个概念,它的主要内容是解方程。我们着重解方程,解决各式各样的问题,着重计算,要把计算的过程、方法、步骤说出来。这个方法步骤,用现在的话来讲,就相当于所谓算法。美国一位计算机数学大师说,计算机数学即是算法的数学。中国的古代数学是一种算法的数学,也就是一种计算机的数学。进入到计算机时代,这种计算机数学或者是算法的数学,刚巧是符合时代要求,符合时代精神的。从这个意义上来讲,我们最古老的数学也是计算机时代最适合、最现代化的数学。这是我个人的一种看法。

我们再来说一下东方数学,也就是中国古代数学的精神实质是什么。我们古代数学的精髓就是从问题出发的精神,和西方的从公理出发完全不一样。为了从问题出发,解决各式各样的问题,就带动了理论和方法的发展。从问题出发,以问题带动学科的发展,这是整个数学发展的总的面貌。

为什么解决问题要解方程呢?原因很简单:一个问题有原始的数据,要求解决这个问题得出答案,这个答案也应是以某种数据的形式来表示的。在原始数据和要求数据之间,有某种形式的关系,这种由已知数和未知数建立起来的关系就是一种方程。为了解决形形色色的问题,就要解决形形色色的方程。因此,解方程变成中国两千多年历史发展中主要的目标所在。

我想特别提到一点,就是我们经常跟着外国人的脚步走。我们往往花很大的力气从事某种猜测的研究,希望能够解决或者至少推进一步。可是不管你对这个猜测证明也好,推进也好,提出这个猜测的人,就好比老师出了一个题目,即使你把这它解决了,也无非是把老师的题目做出来,还是低人一等,出题目的老师还是高你一等。在计算机时代,这个问题值得思考。当然,不管谁提出来这样的问题,我们都应想办法对其有所贡献,可是不能止步于此,我们应该出题目给人家做,这个性质是完全不一样的。

我们正在进入计算机时代,计算机只能处理有限的问题,所以相应的数学应该是一种处理有限事物的数学,在数学上叫“组合数学”。历史上,组合数学创始于中国,以贾宪为首,一系列的成就不断涌现。我们在数学方面得到许多这样的成就绝不是偶然的。东方的数学有一定的思考方法,是有计划、有步骤、有思想地进行的。具体地讲,它有一个基本的模式,就是从实际问题出发,形成一些新的概念,产生一些新的方法,再提高到理论上,建立一般的原理(就像牛顿有关的定理),用这样的原理解决形形色色更复杂、更重要、更艰深的实际问题,这样数学就不断地上升和发展。这就是古代数学发展的大致理论体系。

我们现在拥有计算机这样的便捷武器,又拥有切合计算机时代使用的古代数学。怎样进行工作,才能对得起古代的前辈,建立起我们新时代的新数学,并在不远的将来,使东方的数学超过西方的数学,不断地出题目给西方做,我想,这值得我们大家思考和需要努力的方面。 收起

东方数学主要特征:1具有实用性,较强的社会性;2算法程序化;3. 寓理于算。西方数学主要特征:1封闭的逻辑演绎体系;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义。
下面这部分转自吴文俊院士,我很同意他的观点,你不妨看看,希望对你有所帮助。
一提到科学或者数学,脑子里想到的就是以欧美为代表的西方科学和数学。我要讲的是,除了以西方为代表的科学和数学之外,事实上还有跟它们完全不同的所谓东方科学与数学。这个意见也不是我第一次这样讲,在《中国科学技术史》这一宏篇巨著里面就已经介绍了这一点。李约瑟在著作里讲,东方不仅有科学和数学,而且跟西方走的是完全不同的道路,有不同的思想方法。究竟怎么不一样呢?

所谓东方数学,就是中国的古代数学及印度的古代数学。东西方数学的异同,也就是现在欧美的数学跟东方数学(主要是古代的中国数学)有什么异同。我们学现代数学(也就是西方数学),主要内容是证明定理;而中国的古代数学根本不考虑定理不定理,没有这个概念,它的主要内容是解方程。我们着重解方程,解决各式各样的问题,着重计算,要把计算的过程、方法、步骤说出来。这个方法步骤,用现在的话来讲,就相当于所谓算法。美国一位计算机数学大师说,计算机数学即是算法的数学。中国的古代数学是一种算法的数学,也就是一种计算机的数学。进入到计算机时代,这种计算机数学或者是算法的数学,刚巧是符合时代要求,符合时代精神的。从这个意义上来讲,我们最古老的数学也是计算机时代最适合、最现代化的数学。这是我个人的一种看法。

我们再来说一下东方数学,也就是中国古代数学的精神实质是什么。我们古代数学的精髓就是从问题出发的精神,和西方的从公理出发完全不一样。为了从问题出发,解决各式各样的问题,就带动了理论和方法的发展。从问题出发,以问题带动学科的发展,这是整个数学发展的总的面貌。

为什么解决问题要解方程呢?原因很简单:一个问题有原始的数据,要求解决这个问题得出答案,这个答案也应是以某种数据的形式来表示的。在原始数据和要求数据之间,有某种形式的关系,这种由已知数和未知数建立起来的关系就是一种方程。为了解决形形色色的问题,就要解决形形色色的方程。因此,解方程变成中国两千多年历史发展中主要的目标所在。

我想特别提到一点,就是我们经常跟着外国人的脚步走。我们往往花很大的力气从事某种猜测的研究,希望能够解决或者至少推进一步。可是不管你对这个猜测证明也好,推进也好,提出这个猜测的人,就好比老师出了一个题目,即使你把这它解决了,也无非是把老师的题目做出来,还是低人一等,出题目的老师还是高你一等。在计算机时代,这个问题值得思考。当然,不管谁提出来这样的问题,我们都应想办法对其有所贡献,可是不能止步于此,我们应该出题目给人家做,这个性质是完全不一样的。

我们正在进入计算机时代,计算机只能处理有限的问题,所以相应的数学应该是一种处理有限事物的数学,在数学上叫“组合数学”。历史上,组合数学创始于中国,以贾宪为首,一系列的成就不断涌现。我们在数学方面得到许多这样的成就绝不是偶然的。东方的数学有一定的思考方法,是有计划、有步骤、有思想地进行的。具体地讲,它有一个基本的模式,就是从实际问题出发,形成一些新的概念,产生一些新的方法,再提高到理论上,建立一般的原理(就像牛顿有关的定理),用这样的原理解决形形色色更复杂、更重要、更艰深的实际问题,这样数学就不断地上升和发展。这就是古代数学发展的大致理论体系。

我们现在拥有计算机这样的便捷武器,又拥有切合计算机时代使用的古代数学。怎样进行工作,才能对得起古代的前辈,建立起我们新时代的新数学,并在不远的将来,使东方的数学超过西方的数学,不断地出题目给西方做,我想,这值得我们大家思考和需要努力的方面。

看这篇论文
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。 而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较
最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原著写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部著作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专著有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部著作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专著。这部著作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较 古希腊数学的经典之作是欧几里得的名著《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,

超过他以前的所有著作。《几何原本》分十三篇.含有467个命题。 《几何原本》对世界数学的贡献主要是:
1. 建立了公理体系,明确提出所用的公理、公设和定义。由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。 3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。二千年来,一直被公认为初等数学的基础教材。
而中国的经典之作是《九章算术》。不同的是,《九章算术》并不是一人一时写成的,它经历了多次的整理、删补和修订,是几代人共同劳动的结晶。大约成书于东汉初年(公元一世纪)。《九章算术》采用问题集形式.全书分为九章,例举了246个数学问题,并在若干问题之后,叙述这类问题的解题方法。 《九章算术》对世界数学的贡献主要有: 1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。 3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
刘徽公元263年注《九章算术》,主要贡献是整理此前的中国古代数学成就,并用自己的理解加以评述,特别是一些数学方法的提炼,达到中国数学的高峰。
《九章算术》系统地总结了西周至秦汉时期我国数学的重大成就,是中国数学体系形成的重要标志,其内容丰富多彩,反映了我国古代高度发展的数学。《九章算术》对中国数学发展的影响,可与欧几里得《几何原本》对西方数学的影响一样,是非常深远的。 结论:《九章算术》和《几何原本》同为世界最重要的数学经典。《九章算术》以其实用、算法性称誉世界,《几何原本》以其逻辑演绎的思想方法风靡整个科学界。二者是互相补充的,并非一个掩盖另一个。
三.古希腊数学与中国数学特点的比较
古希腊数学的特点如下:
1.希腊人将数学抽象化,使之成为一种科学.具有不可估量的意义和价值。希腊人坚持使用演绎证明,认识到只有用勿容置疑的演绎推理法才能获得真理。要获得真理就必须从真理出发,不能把靠不住的事实当作己知。从《几何原本》中的10个公理出发,可以得到相当多的定理和命题。
2.希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,尚有不足乃至错误;
3.希腊人重视数学在美学上的意义,认为数学是一种美,是和谐、简单、明确以及有秩序的艺术;
4.希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。
中国数学的特点如下:
1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;
2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;
3.中国数学家的数学论著深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。
4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。同时,用一整套”程序语言”来揭示计算方法,而演算程序简捷而巧妙。 5.中国数学理论表现为运算过程之中,即“寓理于算”。中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
结论:古希腊数学属于公理化演绎体系,着眼于”理”——首先给出公理、公设、定义,尔后在此基础上有条不紊地、由简到繁地进行一系列定理的证明;中国数学属于机械化算法体系;着眼于”算”——把问题分门别类,然后用一个固定的方程式解决一类问题的计算。

看这篇论文
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。 而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较
最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原著写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部著作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专著有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部著作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专著。这部著作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较 古希腊数学的经典之作是欧几里得的名著《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,
超过他以前的所有著作。《几何原本》分十三篇.含有467个命题。 《几何原本》对世

中西方数学发展史上有什么不同的特点
1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;2.中国数学...

中西方数学发展史上有什么不同的特点?
5、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。——克莱因 6、数学是一种会不断进化的文化。——魏尔德7、数学是一种别具匠心的艺术。——哈尔莫斯 8、数学是一切知识中的最高形式。!

中西方数学发展史上有什么不同的特点?
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。东方数学(以中国古代数学为代表)主要特征:1具有实用性,较强的社会性;2算法程序化;3. 寓理于算。西方数学主要特征:1封闭的逻辑演绎体系;2古希腊的数字与神秘性结...

中西古代数学的异同
异:1.从中西古代数学文化史的比较意义上看,形成中西古代数学的两种倾向:逻辑演绎倾向(西)和机械化算法倾向(中);2.从数学文化史的意义上看,发端于古希腊的西方数学不仅仅是一个数学意义的运演操作系统,更主要的是它作为一种文化系统中起主导作用的理性解释系统,或者称之为一种理性构造的规范...

中国古代数学与希腊数学各有什么特点,以及对世界数学的意义
西方数学主要特征:1封闭的逻辑演绎体系季节化的算法;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义 希腊人在数学上的贡献主要是创立了平面几何,立体几何,平面与球面三角,数论。推广了算数与代数。东方数学注重实用性社会性,使数学与我们的生活密切联系,二者都推动了...

数学发展史
现代数学发展呈现出多元化和高度专业化的特点。数学不再局限于传统的领域,而是与其他学科交叉融合,形成了许多新的分支,如数理逻辑、集合论、拓扑学等。同时,计算机技术的发展也极大地推动了数学的进步,使得数学的应用范围更加广泛。总结来说,数学发展史是一部波澜壮阔的史诗,经历了从简单到复杂、从...

中国古代数学与西方数学有什么不同
五、对现代科学发展的启示 1. 汲取中国古代智慧,如数学家吴文俊所发展的“吴方法”。2. 从中国古代的整体观来认识科学,为现代科学发展提供新的视角。总结:中西方数学发展历程中,虽然存在一定的相似性,但在起源、特点、体系建立和发展差距等方面呈现出明显的差异。了解这些差异,有助于我们从不同角度...

萌芽时期数学的特点
数学萌芽时期的特点是人类在长期的生产实践中积累了丰富的有关数和形的感性知识。人们逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识。由于丈量土地和观测天文的需要,几何知识初步兴起,但是这些知识只是零碎的片段,缺乏逻辑关系,人类对数学只是感性的认识,还不存在理性的认识。在史前...

中国古代数学与西方数学有什么不同
中国古代数学与西方数学有什么不同? 作者: e^iπ+1=0 中国古代对于世界的认识是循环闭合的体系,千变万化的现象背后存在着某种联系,它们相互依赖;而西方对于世界的认识是基于直链单向的因果,从一般的抽象化的概念与产生的衍生来解释特殊的现象。这两种思考导致了根本性的区别,那就是中国古代注重对于事物的理解,利用...

试概述数学发展的各个时期的特点
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。具体的...