求和:Sn=1+11+111+…+11…1n个
求不了,调和级数S=1+1/2+1/3+……是发散的,证明如下:
由于ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
由于
lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞
所以Sn的极限不存在,调和级数发散。
但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为
Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)
=ln(n+1)-ln(n)=ln(1+1/n)
由于
lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0
因此Sn有下界
而
Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]
=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0
所以Sn单调递减。由单调有界数列极限定理,可知Sn必有极限,因此
S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在。
于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数。在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等。例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做:
lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2
扩展资料:
随后很长一段时间,人们无法使用公式去逼近调和级数,直到无穷级数理论逐步成熟。1665年牛顿在他的著名著作《流数法》中推导出第一个幂级数:
ln(1+x) = x - x^2/2 + x^3/3 - ...
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值。结果是:
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
他的证明是这样的:
根据Newton的幂级数有:
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
于是:
1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就给出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
......
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + ......
后面那一串和都是收敛的,我们可以定义
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
Euler近似地计算了r的值,约为0.5772156649。这个数字就是后来称作的欧拉常数。
参考资料:百度百科---调和级数
当x=0时,Sn=1;当x=1时,Sn=1+2+3+…+n=n(n+1)2;当x≠1,且x≠0时,Sn=1+2x+3x2+…+nxn-1,①xSn=x+2x2+3x3+…+nxn.②(1-x)Sn=1+x+x2+x3+…+xn-1-nxn=1?xn1?x?nxn,x=0时,上式也成立,∴Sn=1?xn(1?x)2?nxn1?x.x≠1.∴Sn=1,x=0n(n+1)2,x=11?xn(1?x)2?nxn1?x,x≠0,x≠1.
∵根据题中条件可知:an=1 |
9 |
∴Sn=1+11+111+…+
|