如图,一次函数y=ax+b的图像与反比例函数y=x分之k的图像交于m(-4,1),n(m,-2)点,求反比例函数与一次函数的
y=k/x
A(-4,2)
k=xy=-8
所以n=-8/2=-4
带入y=ax+b
所以y=-x-2,y=-8/x
C(-2,0)
过AB座x垂线,交点是D和E
D(-4,0),E(2,0)
所以三角形ACD=2*2/2=2
AOD=4*2/2=4
BCE=4*4*2=8
BOE=4*2/2=4
所以OAB=4-2+8-4=6
一次函数在y=-8/x下方
-42
一次函数为:y=ax+b;反比例函数为y=k/x(k≠0)
已知它们有交点A(-4,2)代入得到:
-4a+b=2;………………………………………………(1)
2=k/(-4)
所以,k=-8
即,反比例函数为y=-8/x
又经过点B(2,n),代入有n=-8/2=-4
所以,点B(2,-4)
代入一次函数就有:2a+b=-4…………………………(2)
联立(1)(2)解得:a=-1,b=-2
综上:
一次函数为:y=-x-2
反比例函数为:y=-8/x
由一次函数y=-x-2得到:当x=0时,y=-2
即,一次函数直线与y轴的交点为C(0,-2)
而S△AOB=S△AOC+S△BOC
=(1/2)*4*2+(1/2)*2*2
=6
由图像上可以看出,当x<-4或者x>2时,一次函数值小于反比例函数值。
将M(-4,1)代入反比例函数y=k/x
得:k=-4
∴反比例函数y=-4/x
将N(m,-2)代入y=-4/x
得:m=4/2=2
将M(-4,1),M(2,-2) 代入y=kx+b
-4k+b=1, 2k+b=-2
解得:b=-1,k=-1/2
∴一次函数的解析式是y=-1/2x-1
2
根据图象写出反比例函数的值大于
一次函数的值的X的取值范围
x>2或-4<x<0
1,因为M(-4 ,1)是y=k/x上的点,所以k=-4.,所以y=-4/x。因为N(m,-2)也是y=-4/x上的点所以m=2.。故一次函数的解析式为y=-1/2x-1.。
2,当 -4 <x<0或x>2时y=-4/x>y=-1/2x-1.。
如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=k\/x...
解:设点D的坐标为(x,k\/x),则F(x,0).由函数的图象可知:x>0,k>0.∴S△DFE=1\/2DF•OF=1\/2*k\/x*x=1\/2k 同理可得S△CEF=1\/2k,故S△DEF=S△CEF.(①正确)若两个三角形以EF为底,则EF边上的高相等,故CD∥EF,即AB∥EF,∴△AOB∽△FOE.(④正确)③条件...
如图,一次函数y=ax+b的图像与正比例函数y=kx的图像交于点M
一次函数过(0,-2),(1.0),利用待定系数法,知道解析式是:y=2x-2.经过(2,m),得m=2.所以M的坐标是(2,2)。所以正比例函数的解析式是;y=x.(2)从图像知道,x<2时,正比例函数的值大于一次函数的值。(3)OP=1,M点的坐标是(2,2),三角形的面积=1 ...
如图,一次函数y=ax+b的图像与反比例函数y=k\/x的图像交于第一象限C,D...
4=k\/1 k=4 y=4\/x 将D(4,m)代入y=4\/x,得 m=4\/4=1 ∴D(4,1)将C(1,4)D(4,1)代入y=ax+b,得 4=a+b 1=4a+b 解方程组得a=-1,b=5 ∴y=-x+5 (2)存在 过点O作线段CD的垂线OQ交线段CD于点Q,较弧CD于点P ∵OC ² =4 ² + 1 ²...
如图,一次函数y=ax+b的图像与反比列函数y=k\/x的图象交于M(2、m),N...
y=k\/x -4=k\/(-1)k=4 y=4\/x x=2 y=2=m m=2 y=ax+b -4=-a+b 2=2a+b a=2 b=-2 y=2x-2 2.4\/x<2x-2 4\/x>0 x>0 2x-2>0 x>1 4<2x^2-2x x^2-x-2>0 (x-2)(x+1)>0 x>2 or x<-1 所以x>2 ...
如图所示,一次函数Y=AX+B的图像与反比例函数Y=X分之K的图像交于A(-2...
将(1\/2,M)代入,得M=-4即B(1\/2,-4)将A(-2,1),B(1\/2,-4)代入Y=AX+B解得A=-2,B=-3 即Y=-2X-3 (2)AB与x轴交点为C(-3\/2,0)三角形AOB= 三角形OAC+ 三角形OBC=3\/2*(1+4)\/2=15\/4 (3)根据图像只要直线在反比例函数之上的部分即可 x<-2 or 0<x<1\/2 ...
如图,一次函数y=ax+b的图像与反比例y=k\/x图像交与AB两点与x轴交与点C...
=5 5n²\/4=5 n²=4 n<0 所以n=-2 k=-2 所以反比例函数y=-2\/x 点A(-2,1)将点B(1\/2,m)代入y=-2\/x m=-2\/(1\/2)=-4 点B(1\/2,-4)将A和B的坐标代入y=ax+b中 -2a+b=1 1\/2a+b=-4 两式相减 5a\/2=-5 a=-2 b=-3 一次函数y=-2x-3 ...
如图,一次函数y=ax+b的图像与反比例函数y=k\/x的图像交于第一象限C,D...
解方程组:y=ax+b , y=k\/x ax^2+bx-k=0 Δ=b^2+4ak Δ>0 |x1-x2|=√Δ\/|a| (可利用求根公式或根与系数的关系得到)x1>x2 x1-x2=|x1-x2|=√Δ\/|a| S⊿DOC=(1\/2)b√Δ\/|a| =[-b\/(2a)]√(b^2+4ak)三角形DOC的面积为:[-b\/(2a)]√(b^2+4ak...
如图,一次函数y=ax+b的图像与反比例函数y=k\/x的图像相较于点A,B...
(1)由点D的坐标得到OD的绝对值为2,由 tan角CDO=二分之一 得到OC的绝对值为1,从而得到点C的坐标(0,1),由点C、D的坐标可以得到一次函数解析式为 y=1\/2 x +1,代入A点横坐标,从而知道点A的坐标为(2,2),进而得到反比例函数的解析式为 y=4\/x 。(2)三角形AOB的面积 = ...
如图,一次函数y=ax+b的图象与反比例函数 y= k x 的图象交于C,D两点...
(1)∵一次函数y=ax+b的图象与反比例函数 y= k x 的图象交于C,D两点,且点C(1,4),∴k=xy=1×4=4,∴反比例函数的解析式为:y= 4 x ;当x=4时,m=y= 4 4 =1,∴m=1; (2)∵C(1,4),D(4,1),∴ a+b=4 4a+b=1 ...
如图,一次函数y=ax+b的图像与反比例y=k\/x图像交与AB两点与x轴交与点C...
m)的坐标代入y=ax+b和y=k\/x得:-a+b=2...(1)a\/2+b=m...(2)-k=2,故k=-2 2k=m,故m=-4,代入(2)式得a\/2+b=-4,即有a+2b=-8...(3)(1)+(3)得 3b=-6,故b=-2,a=-4.于是得一次函数式为 y=-4x-2;反比例函数式为 y=-2\/x.